Артикул: 1136196

Раздел:Технические дисциплины (83532 шт.) >
  Математика (31657 шт.) >
  Дискретная математика (633 шт.) >
  Комбинаторика (341 шт.)

Название или условие:
Вычислить C2n

Описание:
Подробное решение

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Задача 1.1
Сколькими способами можно выбрать путь из начала координат О(0,0) в точку В(n1, n2), если каждый шаг равен 1, но его можно совершать только вправо или вверх? Сколько таких путей проходит через точку А(k1, k2)?

На клетчатой бумаге отмечены произвольные n клеток. Доказать, что из них всегда можно выбрать не менее чем n/4 клеток, попарно не соприкасающихся друг с другом (соприкасающимися считаются клетки, имеющие хотя бы одну общую вершину).
В группе переводчиков, каждый из которых знает один или несколько иностранных языков, 24 владеют японским, 24 — малайским, 24 — персидским. Докажите, что можно выделить подгруппу, в которой ровно 12 человек владели бы японским, ровно 12 — малайским и ровно 12 — персидским На станке должны быть последовательно обработаны пять различных деталей. Сколько вариантов должен проанализировать технолог для выбора наилучшей очередности их обработки?
Порядок выступления 9 участников конкурса определяется жребием. Сколько различных вариантов жеребьевки при этом возможно?В урне имеется 5 белых шаров, 3 красных и 2 чёрных. Наугад по одному вынимается 3 шара, причём после выемки каждого шара исходное количество шаров восстанавливается. Сколько существует вариантов раскраски этих троек?
Какое количество различных символов (букв, цифр и т. п.) можно передать не более чем пятью знаками кода (Морзе), использующего точку (·) и тире (-)?Четыре студента сдают экзамен. Сколькими способами им могут быть выставлены положительные оценки?
У Пети есть 7 монет по 1 рублю и 3 монеты по 2 рубля. Петя случайным образом выбирает 1 монету номиналом 1 рубль и 1 монету номиналом 2 рубля. Сколькими способами он может это сделать?Решите следующую комбинаторную задачу. На диск кодового замка нанесено 12 букв. «Секретное слово» состоит из пяти букв. Сколько неудачных попыток может сделать человек, не знающий «секретного слова»?