Задача 1.1 Сколькими способами можно выбрать путь из начала координат О(0,0) в точку В(n1, n2), если каждый шаг равен 1, но его можно совершать только вправо или вверх? Сколько таких путей проходит через точку А(k1, k2)?
 | На клетчатой бумаге отмечены произвольные n клеток. Доказать, что из них всегда можно выбрать не менее чем n/4 клеток, попарно не соприкасающихся друг с другом (соприкасающимися считаются клетки, имеющие хотя бы одну общую вершину). |
В группе переводчиков, каждый из которых знает один или несколько иностранных языков, 24 владеют японским, 24 — малайским, 24 — персидским. Докажите, что можно выделить подгруппу, в которой ровно 12 человек владели бы японским, ровно 12 — малайским и ровно 12 — персидским | На станке должны быть последовательно обработаны пять различных деталей. Сколько вариантов должен проанализировать технолог для выбора наилучшей очередности их обработки? |
Порядок выступления 9 участников конкурса определяется жребием. Сколько различных вариантов жеребьевки при этом возможно? | В урне имеется 5 белых шаров, 3 красных и 2 чёрных. Наугад по одному вынимается 3 шара, причём после выемки каждого шара исходное количество шаров восстанавливается. Сколько существует вариантов раскраски этих троек? |
Какое количество различных символов (букв, цифр и т. п.) можно передать не более чем пятью знаками кода (Морзе), использующего точку (·) и тире (-)? | Четыре студента сдают экзамен. Сколькими способами им могут быть выставлены положительные оценки? |
У Пети есть 7 монет по 1 рублю и 3 монеты по 2 рубля. Петя случайным образом выбирает 1 монету номиналом 1 рубль и 1 монету номиналом 2 рубля. Сколькими способами он может это сделать? | Решите следующую комбинаторную задачу. На диск кодового замка нанесено 12 букв. «Секретное слово» состоит из пяти букв. Сколько неудачных попыток может сделать человек, не знающий «секретного слова»? |