Артикул: 1154251

Раздел:Технические дисциплины (98538 шт.) >
  Математика (32714 шт.) >
  Дискретная математика (653 шт.) >
  Комбинаторика (358 шт.)

Название или условие:
Задача 1.1
Сколькими способами можно выбрать путь из начала координат О(0,0) в точку В(n1, n2), если каждый шаг равен 1, но его можно совершать только вправо или вверх? Сколько таких путей проходит через точку А(k1, k2)?

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

Задача 1.1 <br />Сколькими способами можно выбрать путь из начала координат О(0,0) в точку В(n1, n2), если каждый шаг равен 1, но его можно совершать только вправо или вверх? Сколько таких путей проходит через точку А(k1, k2)?

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Существует ли конечное слово из букв русского алфавита, в котором нет двух соседних одинаковых подслов, но таковые появляются при приписывании (как справа, так и слева) любой буквы русского алфавита. Комментарий. Словом мы называем любую последовательность букв русского алфавита, не обязательно осмысленную, подсловом называется любой фрагмент слова. Например, АБВШГАБ - слово, а АБВ, Ш, ШГАБ - его подслова. На плоскости дано множество M, состоящее из n точек, никакие три из которых не лежат на одной прямой. Каждому отрезку с концами из М поставлено в соответствие либо число +1, либо число - 1, причем число отрезков, которым соответствует число - 1, равно m. Треугольник с вершинами из М назовем отрицательным, если произведение трех чисел, соответствующих его сторонам, равно - 1. Доказать, что число отрицательных треугольников имеет ту же четность, что и произведение nm.
Из шести источников в микросхему постоянно поступают сигналы трёх типов: из двух – первого типа, из трёх – второго и из одного – третьего. Микросхема выбирает последовательно 4 входных сигнала и выдает эту последовательность в виде выходного сигнала. Сколько вариантов выходных сигналов существует?Мышка грызет куб сыра с ребром 3, разбитый на 27 единичных кубиков. Когда мышка съедает какой-либо кубик, она переходит к другому кубику, имеющему общую грань с предыдущим. Может ли мышка съесть весь куб, кроме центрального кубика?
Из 15 школьников нужно отправить 2 учеников на дежурство. Сколькими способами можно это сделать?Сколько пятизначных чисел можно образовать с помощью цифр 1, 2, 3, 4, 5, если любая из них в числе встречается лишь один раз?
Студенту необходимо сдать четыре экзамена в течение семи дней. Сколькими способами можно составив расписание экзаменов, если учитывать, что в один день он может сдавать только один экзамен? В почтовом отделении продаются открытки 8 типов. Сколькими способами а) можно купить 6 разных открыток? б) можно купить 6 открыток?
Сколько экзаменационных билетов можно составить из 50 вопросов, включая в билет по 2 вопроса?В игре «Десант» две армии захватывают страну. Они ходят по очереди, каждым ходом занимая один из свободных городов. Первый свой город армия захватывает с воздуха, а каждым следующим ходом она может захватить любой город, соединённый дорогой с каким-нибудь уже занятым этой армией городом. Если таких городов нет, армия прекращает свои боевые действия (при этом, возможно, другая армия свои действия продолжает). Найдётся ли такая схема городов и дорог, что армия, ходящая второй, сможет захватить более половины всех городов, как бы ни действовала первая армия? (Число городов конечно, каждая дорога соединяет ровно два города.)