Артикул: 1140679

Раздел:Технические дисциплины (86808 шт.) >
  Математика (32435 шт.) >
  Дискретная математика (650 шт.) >
  Комбинаторика (356 шт.)

Название или условие:
На плоскости дано множество M, состоящее из n точек, никакие три из которых не лежат на одной прямой. Каждому отрезку с концами из М поставлено в соответствие либо число +1, либо число - 1, причем число отрезков, которым соответствует число - 1, равно m. Треугольник с вершинами из М назовем отрицательным, если произведение трех чисел, соответствующих его сторонам, равно - 1. Доказать, что число отрицательных треугольников имеет ту же четность, что и произведение nm.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

В игре «Десант» две армии захватывают страну. Они ходят по очереди, каждым ходом занимая один из свободных городов. Первый свой город армия захватывает с воздуха, а каждым следующим ходом она может захватить любой город, соединённый дорогой с каким-нибудь уже занятым этой армией городом. Если таких городов нет, армия прекращает свои боевые действия (при этом, возможно, другая армия свои действия продолжает). Найдётся ли такая схема городов и дорог, что армия, ходящая второй, сможет захватить более половины всех городов, как бы ни действовала первая армия? (Число городов конечно, каждая дорога соединяет ровно два города.) Решите следующую комбинаторную задачу. На диск кодового замка нанесено 12 букв. «Секретное слово» состоит из пяти букв. Сколько неудачных попыток может сделать человек, не знающий «секретного слова»?
Среди 100 фотографий есть одна разыскиваемого преступника. Наудачу выбирают 10 фотографий. Какое количество сочетаний по 10 фотографий, содержащих фотографию разыскиваемого преступника, существует?Маше нужно выбрать из 8 книг 2 книги. Сколькими способами она может это сделать?
Сколько пятизначных чисел можно образовать с помощью цифр 1, 2, 3, 4, 5, если любая из них в числе встречается лишь один раз?Каждый из 17 ученых переписывается с остальными. В их переписке речь идет лишь о трех темах. Каждая пара ученых переписывается друг с другом лишь по одной теме. Докажите, что не менее трех ученых переписываются друг с другом по одной и той же теме.
Сколькими способами можно на полке расставить 4 книги?Студенту необходимо сдать четыре экзамена в течение семи дней. Сколькими способами можно составив расписание экзаменов, если учитывать, что в один день он может сдавать только один экзамен?
«Дельфин» - фигура, которая ходит на одно поле вверх, вправо или по диагонали налево вниз, как показано на рис. Может ли «дельфин», начиная из левого нижнего угла доски размером 8×8, обойти всю эту доску, побывав в каждой клетке ровно по одному разу?
На тренировках занимаются 12 баскетболистов. Сколько может быть образовано тренером разных стартовых пятерок?