Артикул: 1140679

Раздел:Технические дисциплины (86808 шт.) >
  Математика (32435 шт.) >
  Дискретная математика (650 шт.) >
  Комбинаторика (356 шт.)

Название или условие:
На плоскости дано множество M, состоящее из n точек, никакие три из которых не лежат на одной прямой. Каждому отрезку с концами из М поставлено в соответствие либо число +1, либо число - 1, причем число отрезков, которым соответствует число - 1, равно m. Треугольник с вершинами из М назовем отрицательным, если произведение трех чисел, соответствующих его сторонам, равно - 1. Доказать, что число отрицательных треугольников имеет ту же четность, что и произведение nm.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Среди 100 фотографий есть одна разыскиваемого преступника. Наудачу выбирают 10 фотографий. Какое количество сочетаний по 10 фотографий, содержащих фотографию разыскиваемого преступника, существует?Задача 1.1
Сколькими способами можно выбрать путь из начала координат О(0,0) в точку В(n1, n2), если каждый шаг равен 1, но его можно совершать только вправо или вверх? Сколько таких путей проходит через точку А(k1, k2)?

Сколькими способами можно на полке расставить 4 книги?Сколькими способами можно выбрать две книги из трех и расположить их в ряд на полке
В игре «Десант» две армии захватывают страну. Они ходят по очереди, каждым ходом занимая один из свободных городов. Первый свой город армия захватывает с воздуха, а каждым следующим ходом она может захватить любой город, соединённый дорогой с каким-нибудь уже занятым этой армией городом. Если таких городов нет, армия прекращает свои боевые действия (при этом, возможно, другая армия свои действия продолжает). Найдётся ли такая схема городов и дорог, что армия, ходящая второй, сможет захватить более половины всех городов, как бы ни действовала первая армия? (Число городов конечно, каждая дорога соединяет ровно два города.) На клетчатой бумаге отмечены произвольные n клеток. Доказать, что из них всегда можно выбрать не менее чем n/4 клеток, попарно не соприкасающихся друг с другом (соприкасающимися считаются клетки, имеющие хотя бы одну общую вершину).
В урне имеется 5 белых шаров, 3 красных и 2 чёрных. Наугад по одному вынимается 3 шара, причём после выемки каждого шара исходное количество шаров восстанавливается. Сколько существует вариантов раскраски этих троек?Какое количество различных символов (букв, цифр и т. п.) можно передать не более чем пятью знаками кода (Морзе), использующего точку (·) и тире (-)?
Мышка грызет куб сыра с ребром 3, разбитый на 27 единичных кубиков. Когда мышка съедает какой-либо кубик, она переходит к другому кубику, имеющему общую грань с предыдущим. Может ли мышка съесть весь куб, кроме центрального кубика? Из шести источников в микросхему постоянно поступают сигналы трёх типов: из двух – первого типа, из трёх – второго и из одного – третьего. Микросхема выбирает последовательно 4 входных сигнала и выдает эту последовательность в виде выходного сигнала. Сколько вариантов выходных сигналов существует?