Артикул: 1151807

Раздел:Технические дисциплины (97017 шт.) >
  Теоретическая механика (теормех, термех) (1941 шт.) >
  Динамика (369 шт.)

Название или условие:
Динамика точки
Тело массой m, прикрепленное пружиной к неподвижной точке, движется по гладкой плоскости, образующей угол α с горизонтом, под действием возмущающей силы F = F0sin(pt) В начальный момент тело находилось в покое в положении равновесия. Найти
1) Частоту и период свободных колебаний
2) Уравнения движения тела
Вариант 4

Описание:
Подробное решение - скан рукописного решения

Изображение предварительного просмотра:

Динамика точки<br />Тело массой m, прикрепленное пружиной к неподвижной точке, движется по гладкой плоскости, образующей угол α с горизонтом, под действием возмущающей силы F = F0sin(pt)   В начальный момент тело находилось в покое в положении равновесия. Найти  <br />1) Частоту и период свободных колебаний  <br />2) Уравнения движения тела  <br /><b>Вариант 4</b>

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Задача Д1
4.1.1. Условия задачи. Барабан радиусом R и весом Р (рис. 4.1), имеющий выточку радиусом r = 0,6R с намотанным на нее тросом, находится в зацеплении с наклонной плоскостью (может катиться по плоскости без проскальзывания). Угол между наклонной плоскостью и горизонталью α. Радиус инерции барабана с тросом ρ = 0,5R.
На барабан помимо силы веса P действуют следующие активные (заданные) нагрузки:
- сила натяжения троса T, действующая по касательной к выточке, точка ее приложения задается углом β, отсчитываемым от нормали к плоскости, как показано на рис. 4.1;
- горизонтальная сила Q, приложена к оси С барабана;
- пара сил с моментом М.
Численные значения характеристик плоскости, барабана и заданных нагрузок для различных вариантов задачи приведены в табл. Д1.
Под действием указанных сил барабан начинает движение из состояния покоя.
Вариант 789

Задача Д1 Вариант 1
Груз М массой m=4,5кг, получив в точке А начальную скорость V0=18м/с, движется в изогнутой трубе АВС, расположенной в вертикальной плоскости. На участке АВ на груз кроме силы тяжести P действует постоянная сила Q (Q=9Н) и сила сопротивления среды R, зависящая от скорости v груза, R=0,45V; трением груза о трубу на этом участке пренебречь.
В точке В груз, изменив направление приобретенной скорости, но сохранив при этом ее величину, переходит на участок ВС трубы, где на него кроме силы тяжести действуют силы трения (коэффициент трения груза о трубу f = 0,2) и переменная по величине сила F, направленная вдоль участка ВС, проекция которой на ось Вх: Fx =3sin(2t).
Считая груз материальной точкой и зная время t1=5c движения груза от точки А до точки В, найти уравнение х=х(t) движения груза на участке ВС.

Индивидуальное задание №3
Вариант №28

Механическая система, состоящая из абсолютно твердых тел, под действием сил тяжести приходит в движение из состояния покоя с недеформированной невесомой пружиной; начальное положение системы показано на рисунке 1. Учитывая упругую силу в момент сопротивления качению, определить скорость v1 тела 1 в тот момент, когда пройденный им путь станет равным S1. Другими силами сопротивления пренебречь.

Задача 3.2
Вертикальный вал АВ (рис.1.2), вращающийся с постоянной угловой скоростью ω, закреплен подпятником в точке А и цилиндрическим подшипником в точке В К валу жестко прикреплен невесомый стержень длиной l с точечной массой m на конце. Пренебрегая весом вала, определить реакции подпятника А и подшипника В.
Вариант 5
Дано: ω=10c-1-const, l=0.4м, a=b=0.6м, m=2кг, α=60°, g≈10м/c2.
Определить: YA, ZA, RB-?

Общие теоремы динамики материальной точки
Шарик массы т движется из положения А внутри изогнутой трубки, расположенной в вертикальной плоскости. Шарик, пройдя путь 1, отделяется от пружины. В точке В шарик, не меняя значения своей скорости, переходит на участок ВС, где на него дополнительно действует переменная сила F, направление которой указано на рисунке. Пользуясь общими теоремами динамики точки, определить скорость шарика в положениях В и С. В задании приняты следующие обозначения: 1 - начальная скорость шарика, АВ - длина участка, 7 - время движения на участке ВС, f - коэффициент трения скольжения шарика по стенке трубки, с коэффициент жесткости пружины.
Вариант 9

Лыжник массой m = 70 кг опускается без начальной скорости по склону, составляющему угол α = 30° с горизонтом, не отталкиваясь палками. Длина спуска l = 100 м, коэффициент трения скольжения лыж о снег f = 0.1. Сила сопротивления воздуха пропорциональна квадрату скорости R = 0.4v2. Определить скорость лыжника в конце спуска.
Задача 3. Применение принципа возможных перемещений к определению реакций опор составной конструкции
Применяя принцип возможных перемещений, определить реакции составной конструкции. Схемы конструкций показаны на рис. Д3.0 – Д3.9, а необходимые для решения данные приведены в табл. Д3. На рисунках все размеры указаны в метрах.
Вариант 13 (Схема 3 Данные 1)

Задача Д1
Динамика материальной точки

Груз D массой m, получив в точке А начальную скорость, движется в изогнутой трубе АВС, расположенной в вертикальной плоскости.
На участке АВ на груз кроме силы тяжести действует постоянная сила Q=10Н, направленная от точки А к точке В, и сила сопротивления среды R , зависящая от скорости V груза D: R=μVn.
В точке В груз, изменив направление приобретенной скорости, но, сохранив при этом ее величину, переходит на участок ВС трубы, где на него, помимо силы тяжести действует сила трения (коэффициент трения груза о трубу f=0,2) и переменная по величине сила F=F(t), направленная вдоль участка ВС. Проекция Fx последней на ось Вх задается.
Считая груз D материальной точкой, и зная расстояние АВ или время t движения груза от точки А до точки В, найти уравнение х=х(t) движения груза на участке ВС.
Вариант 11-5

Задача Д1. Интегрирование ДУ движения материальной точки, находящейся под действием постоянных сил.
Варианты 6-0 (рис.20 приложения, схема 2 и данные в таблице 32). Лыжник подходит к точке A участка трамплина AB, наклонённого под углом α к горизонту и имеющего длину l, со скоростью vA. Коэффициент трения скольжения лыж на участке AB равен f. Лыжник от A до B движется τ с; в точке B он покидает трамплин со скоростью vB. Через T с лыжник приземляется со скоростью vC в точке C горы, составляющей угол β с горизонтом.
При решении задачи принять лыжника за материальную точку и не учитывать сопротивление воздуха
Вариант 0

Задача №4
Применение теоремы об изменении кинетической энергии

Груз 1 (массой m1) поднимается при помощи троса (рис. 1), перекинутого через блок 3 (радиуса r и масса m3), который приводится во вращение электромотором, создающим постоянный вращающий момент МО. Определить угловую скорость вращения барабана 2 в тот момент, когда груз 1 поднимется на высоту h. Барабан 2 имеет форму цилиндра, а блок 3 форму диска. В начальный момент времени система находилась в покое. Массой троса пренебречь.
Вариант 2
Дано: m1 = 9 кг; m2 = 14 кг; m = 0,6 кг; R = 0,2 м; r = 0,1 м; МО = 350 Н∙м; h = 0,6 м.