Артикул: 1140659

Раздел:Технические дисциплины (86810 шт.) >
  Математика (32435 шт.) >
  Теория вероятности (4198 шт.)

Название или условие:
Разъезжающий булочник продает в среднем 20 кексов за одну поездку. Какова вероятность того, что он продаст четное число кексов? (Предполагается, что число покупок подчиняется закону Пуассона.)

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Какова вероятность того, что корни квадратного уравнения x2+2bx+c=0 вещественны? (а) На железной дороге N поездов с номерами 1,2,⋯,N. Однажды вам встретился поезд с номером 60. Угадайте, сколько поездов на железной дороге.
(б) Вы повстречали 5 поездов, причем 60 по-прежнему наибольший номер. Снова постарайтесь угадать, сколько всего поездов на железной дороге.
В пирамиде 10 винтовок, из которых 4 пристреляны, а 6 – нет. Вероятность попадания при стрельбе из пристрелянной винтовки – 0.95; для винтовки без пристрелки эта вероятность равна – 0.8. Во время учебной тревоги солдат наудачу берет винтовку из пирамиды и стреляет из нее дважды. Найти вероятности того, что : а) солдат оба раза поразил мишень; б) солдат стрелял из пристрелянной винтовки, если он поразил мишень дважды.В поисках парных дней рождения. Вы задались целью найти человека, день рождения которого совпадает с вашим. Сколько незнакомцев вам придется опросить, чтобы вероятность встречи такого человека была бы не меньше, чем 1/2?
Человеку, находящемуся в Лас-Вегасе, нужны 40 долларов, в то время как он располагает лишь 20 долларами. Он не хочет телеграфировать жене о переводе денег и решает играть в рулетку (отрицательно относясь к этой игре) согласно одной из двух стратегий: либо поставить все свои 20 долларов на «чет» и закончить игру сразу же, если он выиграет или проиграет, либо ставить на «чет» по одному доллару до тех пор, пока он не выиграет или не проиграет 20 долларов. Какая из этих двух стратегий лучше? Дуэли в городе Осторожности редко кончаются печальным исходом. Дело в том, что каждый дуэлянт прибывает на место встречи в случайный момент времени между 5 и 6 часами утра и, прождав соперника 5 минут, удаляется. В случае же прибытия последнего в эти пять минут дуэль состоится. Какая часть дуэлей действительно заканчивается поединком?
Если хорда выбирается наудачу в заданном круге, то какова вероятность того, что ее длина больше радиуса круга? Игроки A и B в орлянку играют N раз. После первого бросания каковы шансы на то, что в течение всей игры их выигрыши не совпадут?
Предположим, что на плоскость, разграфленную на единичные клетки вертикальными и горизонтальными прямыми, наудачу брошена игла длиной 2l (меньшей, чем 1) Каково среднее число прямых, пересекаемых иглою? (Мы считаем, что сторона клетки 2a равна 1, так как можно измерять длину иглы в единицах длины клеток) Игра состоит из последовательности партий, в каждой из которых вы или ваш партнер выигрывает очко, вы - с вероятностью p (меньшей, чем 12), он - с вероятностью 1−p. Число игр должно быть четным: 2, 4, 6 и т. д. Для выигрыша надо набрать больше половины очков. Предположим, что вам известно, что p=0,45, и в случае выигрыша вы получаете приз. Если число партий в игре выбирается заранее, то каков будет ваш выбор?