Артикул: 1139697

Раздел:Технические дисциплины (85919 шт.) >
  Математика (32326 шт.) >
  Математический анализ (20759 шт.) >
  Приложения определенного интеграла (978 шт.)

Название или условие:
Вычислить площадь плоской фигуры, ограниченной линиями, заданными уравнением r = 2(1- cosφ) в полярной системе координат.

Описание:
Подробное решение

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Найти площадь фигуры, ограниченной линиями: y = ln(x); y = 0, x = e (e ≈ 2,718)Найти массу пластины, ограниченной линиями L1: x2 + (y - 1)2 = 1; L2: x2 + y2 = 4y; L3: x = 0 (x ≥ 0), если δ(x,y) = xy2 – поверхностная плотность пластины в точке..
Найти длину дуги линии y = lnsin(x), π/3 ≤ x ≤ π/2
Найти площадь фигуры с помощью двойного интеграла
D:y=12-x,y=4√x,x=0

Вычислить массу контура L : x2 + y2 = 4x если плотность в каждой его точке δ = x - y
Найти объем и боковую поверхность параболоида, образованного вращением параболы y2 = 2px вокруг оси Ox и ограниченного плоскостью x = H
Определить площадь ограниченную спиралью Архимеда r = aφ и двумя радиусами-векторами, которые соответствуют полярным углам φ1 и φ2( φ1 < φ2)
Найти площадь, ограниченную цепной линией, определяемой уравнением y = a/2(ex/a + e-x/a), осями координат и прямой x = a ( a > 0)
Вычислить площадь одного лепестка розы, определяемой уравнением r = asin(kφ)
Вычислить площадь фигуры, ограниченной линиями
y = x + 1, y = x2 + 2x + 1