Артикул: 1119482

Раздел:Технические дисциплины (77504 шт.) >
  Математика (29880 шт.) >
  Математический анализ (20277 шт.) >
  Приложения определенного интеграла (964 шт.)

Название или условие:
Найти объем тела, отсекаемого от прямого круглого цилиндра плоскостью, проходящей через диаметр основания под углом α к нему.

Изображение предварительного просмотра:

Найти объем тела, отсекаемого от прямого круглого цилиндра плоскостью, проходящей через диаметр основания под углом α к нему.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Вычислить массу контура L : x2 + y2 = 4x если плотность в каждой его точке δ = x - y
Найти площадь, заключенную между осью Ox и верзиерой, определяемой уравнениями
Найти площадь фигуры, ограниченной линиями: y = ln(x); y = 0, x = e (e ≈ 2,718)Вычислить площадь фигуры, ограниченной линиями y = x2, y = √(-x)
Найти площадь фигуры, ограниченной кривой ρ= 2cos(3φ) . В ответе указать величину (1/π)S
Вычислить площадь фигуры, ограниченной линиями
y = x2 + 3x, y = -x2 - 3x

Вычислить площадь фигуры, ограниченной графиками функций f(x) = x - 1 и g(x) = x2 - 4x + 3. Сделать чертеж
Вычислить площадь ограниченную линиями: y=x2-6x+5, y=-x-1
Найти площадь фигуры, ограниченной линиями у = х2 – 3, у = -2х.Вычислить объем и поверхность шара, рассматривая его как тело вращения