Артикул: 1119480

Раздел:Технические дисциплины (77504 шт.) >
  Математика (29880 шт.) >
  Математический анализ (20277 шт.) >
  Приложения определенного интеграла (964 шт.)

Название или условие:
Найти площадь, заключенную между осью Ox и верзиерой, определяемой уравнениями

Изображение предварительного просмотра:

Найти площадь, заключенную между осью Ox и верзиерой, определяемой уравнениями

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Найти длину дуги линии y = lnsin(x), π/3 ≤ x ≤ π/2
Определить площадь ограниченную спиралью Архимеда r = aφ и двумя радиусами-векторами, которые соответствуют полярным углам φ1 и φ2( φ1 < φ2)
Вычислить площадь плоской фигуры, ограниченной линиями, заданными уравнением r = 2(1- cosφ) в полярной системе координат.Вычислить массу контура L : x2 + y2 = 4x если плотность в каждой его точке δ = x - y
Найти площадь, ограниченную кардиоидой r = 2a(1 - cos(φ))
Вычислить площадь фигуры, ограниченной линиями
y = x2 + 3x, y = -x2 - 3x

Вычислить объем и поверхность тора, образованного вращением круга, уравнение окружности которого x2 + (y - a)2 = R2, вокруг оси Ox (a > R)
Найти площадь фигуры, ограниченной линиями: y = ln(x); y = 0, x = e (e ≈ 2,718)
Найти площадь фигуры, ограниченной кривой ρ= 2cos(3φ) . В ответе указать величину (1/π)S
Вычислить площадь одного лепестка розы, определяемой уравнением r = asin(kφ)