Решение систем линейных алгебраических уравнений Решить систему линейных алгебраических уравнений Ах=В а) методом Гаусса с выбором главного элемента б) методом простых итераций (с оценкой достаточного числа итераций) в) методом Зайделя Решение найти с точностью 10-3 В промежуточных вычислениях удерживать 4-5 знаков после запятой Вариант 3
 | Найти форму струны, определяемой уравнением в момент t = π/2a
 |
Решить задачу Коши для уравнения теплопроводности на прямой
 | Найти решение уравнения du/dt = d2u/dx2, удовлетворяющее начальному условию u|t = 0 = f(x) = u0 и краевому условию u|x = 0 = 0
 |
Задача 111 Найти напряжение в однородном электрическом проводе с параметрами С, G, L, R, если начальный ток и начальное напряжение равны нулю, один конец провода заземлен, а к другому начиная с момента t = 0 приложена ЭДС Е = Аsinωt. | Найти стационарное распределение температуры в тонком стержне с теплоизолированной боковой поверхностью, если на концах стержня u|x = 0 = u0, u|x = l = ul
 |
В сопротивлении материалов доказывается, что дифференциальное уравнение упругой линии консоли с постоянным поперечным сечением и сосредоточенной на свободном конце силой Р имеет вид d2ω/dx2 = -Px/El где ω - прогиб консоли в сечении с абсциссой х, а EI - постоянная величина, так называемая жесткость на изгиб сечения балки. Найти решение этого уравнения, удовлетворяющее начальным условиям: ω(l) = 0; ω'(l) = 0
 | Найти решение уравнения
 |
Решить задачу Коши для уравнения колебания бесконечной струны:
 | Методом Даламбера найти уравнение u=u(x;t) формы однородной бесконечной струны, определяемой волновым уравнением d2u/dt2 = a2(d2u/dx2), если в начальный момент t0 = 0 форма струны и скорость точки струны с абсциссой х определяется соответственно заданными функциями
 |