Артикул: 1157258

Раздел:Технические дисциплины (101484 шт.) >
  Математика (32768 шт.) >
  Уравнения математической физики (урматы, матфизика) (177 шт.)

Название или условие:
Задача 67
Внутри бесконечного цилиндра с момента t = 0 действуют равномерно распределенные источники тепла, интенсивность которых меняется по закону q = sinωt. Начальная температура систему нулевая, на поверхности поддерживается нулевая температура. Найти закон изменения температуры.

Описание:
Подробное решение

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Найти решение уравнения теплопроводности d2u/dx2 = α2(du/dt), удовлетворяющее начальным и граничным условиям: u(x, 0) = Asin(nπx/l), 0 ≤ x ≤ l, u(0,t) = u(l, t) = 0
Методом Даламбера найти уравнение u=u(x;t) формы однородной бесконечной струны, определяемой волновым уравнением d2u/dt2 = a2(d2u/dx2), если в начальный момент t0 = 0 форма струны и скорость точки струны с абсциссой х определяется соответственно заданными функциями
Решение по методу Фурье
Методом Фурье найти решение уравнения колебания струны d2u/dt2 = d2u/dx2 длины l = 2, закреплённой на концах y(0, t) = u(2,t) = 0 и удовлетворяющей следующим начальным условиям: u(x,0) = f(x), du(x, 0)/dt = φ(x)
φ(x) = 0, f(x) = 4x - 2x2, 0 ≤ x ≤ 2

Расчетно-графическая работа на тему: "Определение поля температур в плоской пластинке методом сеток"
Концы струны x = 0 и x = l закреплены жестко. Начальное отклонение задано равенством u(x, 0) = Asin(πx/l), 0 ≤ x ≤ l; начальная скорость равна нулю. Найти отклонение u (x, t) при t > 0
Дана струна, закрепленная на концах x = 0 и x = l. Пусть в начальный момент форма струны имеет вид ломаной ОАВ. Найти форму струны для любого момента времени t, если начальные скорости отсутствуют.
Решение систем линейных алгебраических уравнений
Решить систему линейных алгебраических уравнений
Ах=В
а) методом Гаусса с выбором главного элемента
б) методом простых итераций (с оценкой достаточного числа итераций)
в) методом Зайделя
Решение найти с точностью 10-3
В промежуточных вычислениях удерживать 4-5 знаков после запятой
Вариант 3

Задача 111
Найти напряжение в однородном электрическом проводе с параметрами С, G, L, R, если начальный ток и начальное напряжение равны нулю, один конец провода заземлен, а к другому начиная с момента t = 0 приложена ЭДС Е = Аsinωt.
Решить задачу Коши для уравнения колебания бесконечной струны: