Решить задачу Коши для уравнения колебания бесконечной струны:
 | Концы струны x = 0 и x = l закреплены жестко. Начальное отклонение задано равенством u(x, 0) = Asin(πx/l), 0 ≤ x ≤ l; начальная скорость равна нулю. Найти отклонение u (x, t) при t > 0
 |
Методом Фурье найти решение уравнения колебания струны d2u/dt2 = d2u/dx2 длины l = 2, закреплённой на концах y(0, t) = u(2,t) = 0 и удовлетворяющей следующим начальным условиям: u(x,0) = f(x), du(x, 0)/dt = φ(x) φ(x) = 0, f(x) = 4x - 2x2, 0 ≤ x ≤ 2
 | Дана струна, закрепленная на концах x = 0 и x = l. Пусть в начальный момент форма струны имеет вид ломаной ОАВ. Найти форму струны для любого момента времени t, если начальные скорости отсутствуют.
 |
Методом Даламбера найти уравнение u=u(x;t) формы однородной бесконечной струны, определяемой волновым уравнением d2u/dt2 = a2(d2u/dx2), если в начальный момент t0 = 0 форма струны и скорость точки струны с абсциссой х определяется соответственно заданными функциями
 | Показать, что функция z = φ(x - at) + ψ(x + at) удовлетворяет уравнению колебания струны d2z/dt2 = a2(d2z/dx2) (функции φ и Ψ - какие угодно дважды дифференцируемые функции)
 |
Задача 111 Найти напряжение в однородном электрическом проводе с параметрами С, G, L, R, если начальный ток и начальное напряжение равны нулю, один конец провода заземлен, а к другому начиная с момента t = 0 приложена ЭДС Е = Аsinωt. | Методом Даламбера найти уравнение u=u(x;t) формы однородной бесконечной струны, определяемой волновым уравнением d2u/dt2 = a2(d2u/dx2), если в начальный момент t0 = 0 форма струны и скорость точки струны с абсциссой х определяется соответственно заданными функциями
 |
Методом Даламбера найти уравнение u=u(x;t) формы однородной бесконечной струны, определяемой волновым уравнением d2u/dt2 = a2(d2u/dx2), если в начальный момент t0 = 0 форма струны и скорость точки струны с абсциссой х определяется соответственно заданными функциями
 | Решить уравнение колебаний струны методом Фурье
 |