Найти решение уравнения du/dt = d2u/dx2, удовлетворяющее начальному условию u|t = 0 = f(x) = u0 и краевому условию u|x = 0 = 0
 | Методом Фурье найти решение уравнения колебания струны d2u/dt2 = d2u/dx2 длины l = 2, закреплённой на концах y(0, t) = u(2,t) = 0 и удовлетворяющей следующим начальным условиям: u(x,0) = f(x), du(x, 0)/dt = φ(x) φ(x) = 0, f(x) = 4x - 2x2, 0 ≤ x ≤ 2
 |