Решить задачу Коши для уравнения колебания бесконечной струны:
| Методом Фурье найти решение уравнения колебания струны d2u/dt2 = d2u/dx2 длины l = 2, закреплённой на концах y(0, t) = u(2,t) = 0 и удовлетворяющей следующим начальным условиям: u(x,0) = f(x), du(x, 0)/dt = φ(x) φ(x) = 0, f(x) = 4x - 2x2, 0 ≤ x ≤ 2
|
Найти стационарное распределение температуры в тонком стержне с теплоизолированной боковой поверхностью, если на концах стержня u|x = 0 = u0, u|x = l = ul
| Найти решение уравнения du/dt = a2(d2u/dx2), удовлетворяющее начальным и граничным условиям: u(x, 0) = 0; u(0, t) = u0, 0 < x < ∞, t > 0
|
Решить задачу Коши для уравнения колебания бесконечной струны:
| Решить задачу Коши для уравнения теплопроводности на прямой
|
Решение по методу Фурье
| Показать, что функция z = φ(x - at) + ψ(x + at) удовлетворяет уравнению колебания струны d2z/dt2 = a2(d2z/dx2) (функции φ и Ψ - какие угодно дважды дифференцируемые функции)
|
Решение систем линейных алгебраических уравнений Решить систему линейных алгебраических уравнений Ах=В а) методом Гаусса с выбором главного элемента б) методом простых итераций (с оценкой достаточного числа итераций) в) методом Зайделя Решение найти с точностью 10-3 В промежуточных вычислениях удерживать 4-5 знаков после запятой Вариант 3
| Найти форму струны, определяемой уравнением в момент t = π/2a
|