Найти решение уравнения du/dt = d2u/dx2 (0 < x < l), t > 0
| Решение по методу Фурье
|
Решить задачу Коши для уравнения колебания бесконечной струны:
| В сопротивлении материалов доказывается, что дифференциальное уравнение упругой линии консоли с постоянным поперечным сечением и сосредоточенной на свободном конце силой Р имеет вид d2ω/dx2 = -Px/El где ω - прогиб консоли в сечении с абсциссой х, а EI - постоянная величина, так называемая жесткость на изгиб сечения балки. Найти решение этого уравнения, удовлетворяющее начальным условиям: ω(l) = 0; ω'(l) = 0
|
Методом Фурье найти решение уравнения колебания струны d2u/dt2 = d2u/dx2 длины l = 2, закреплённой на концах y(0, t) = u(2,t) = 0 и удовлетворяющей следующим начальным условиям: u(x,0) = f(x), du(x, 0)/dt = φ(x) φ(x) = 0, f(x) = 4x - 2x2, 0 ≤ x ≤ 2
| Методом Даламбера найти уравнение u=u(x;t) формы однородной бесконечной струны, определяемой волновым уравнением d2u/dt2 = a2(d2u/dx2), если в начальный момент t0 = 0 форма струны и скорость точки струны с абсциссой х определяется соответственно заданными функциями
|
Решить задачу Коши для уравнения теплопроводности на прямой
| Найти решение уравнения du/dt = d2u/dx2, удовлетворяющее начальному условию u|t = 0 = f(x) = u0 и краевому условию u|x = 0 = 0
|
Задача 111 Найти напряжение в однородном электрическом проводе с параметрами С, G, L, R, если начальный ток и начальное напряжение равны нулю, один конец провода заземлен, а к другому начиная с момента t = 0 приложена ЭДС Е = Аsinωt. | Решение по методу Фурье
|