Артикул: 1100415

Раздел:Технические дисциплины (66044 шт.) >
  Математика (24668 шт.) >
  Прикладная математика (58 шт.) >
  Теория игр (40 шт.)

Название или условие:
Дана платежная матрица с параметром.
Требуется найти:
2.1. Верхнюю и нижнюю цены игры.
2.2. Если есть решение в чистых стратегиях, то найти его.
2.3. Если нет решения в чистых стратегиях, то свести задачу к задаче линейного программирования для смешанных стратегий.
2.4. Решить задачу в смешанных стратегиях.
Вариант 4

Изображение предварительного просмотра:

Дана платежная матрица с параметром. <br />Требуется найти: <br />2.1. Верхнюю и нижнюю цены игры. <br />2.2. Если есть решение в чистых стратегиях, то найти его. <br />2.3. Если нет решения в чистых стратегиях, то свести задачу  к задаче линейного программирования для смешанных стратегий. <br />2.4. Решить задачу в смешанных стратегиях.<br /> Вариант 4

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Найти решение матричной игры любым методом
Дана платежная матрица игры двух лиц. Используя представления теории чистых стратегий, найдите гарантирующие оптимальные стратегии игроков, их гарантированные оптимальные эффективности; найдите точную цену игры, если она существует, или интервал значений платы пассивному игроку за его участие в игре.
Решить графически игру, заданную платежной матрицей
Дана таблица выигрышей в игре с природой
Определим оптимальную стратегию первого игрока по различным критериям:
1) по критерию максимального среднего выигрыша, если экспертные оценки вероятностей составляют р1, р2, р3, р4
2) по критерию Сэвиджа
3) По критерию Гурвица с показателем пессимизма λ = 1/4
4) По критерию Вальда

Ситуация 1. Определить верхнюю и нижнюю цену игры и, если возможно, то и седловую точку
На корабле 50 пиратов делят 100 кусков золота по следующему правилу: первым дележ предлагает капитан. Если хотя бы половина команды (включая капитана) согласна, то на этом игра и заканчивается. Если нет, то капитана выбрасывают за борт и дележ предлагает следующий по старшинству и т.д. Найдите совершенное подыгровое равновесие в этой игре.
Принятие решения по выбору электростанции для строительства.
Необходимо выбрать проект электростанции.
Возможно строительство электростанций по четырем типам проектов: А1 -тепловые, А2 - приплотинные, А3 - бесшлюзовые, А4 - шлюзовые. Последствия строительства и эксплуатации электростанции каждого типа зависят от ряда неопределенных факторов, которые можно представить в виде различных состояний среды. Допустим, можно выделить четыре сочетания различных факторов, определяющих четыре состояния среды В1, В2, В3, В4. Экономическая эффективность электростанции, выраженная как процент прироста доходов в течение одного года эксплуатации электростанции, зависит как от типа электростанции, так и от состояния среды и задана матрицей

Решить задачу теории игр
Считаем, что игрок I выбирает свою стратегию так, чтобы получить максимальный свой выигрыш, а игрок II выбирает свою стратегию так, чтобы минимизировать выигрыш игрока I.
(3 страницы Word)

Пример решения игры «с природой» в экономической задаче.
Профсоюз заключает с фирмой соглашение на несколько лет об уровне заработной платы w>0. Профсоюз максимизирует функцию совокупной прибыли членов профсоюза (зарплата за вычетом издержек от работы): u(w,L)=wL-4*L2, фирма максимизирует свою прибыль (выпуск за вычетом зарплаты): П(w,l)=7*L0.5-wL.
a) Найти равновесный уровень заработной платы и занятости в статической игре.
b) Каково равновесие в динамической игре, если профсоюз достаточно мощный, чтобы навязать фирме любой уровень заработной платы, после чего фирма не может менять уровень заработной платы в течение срока контракта, но может нанимать любое количество труда L>0.
c) Каково равновесие в динамической игре, если фирма – монополист на рынке труда, и она может установить любую заработную плату, после чего профсоюз может только регулировать численность работающих на монополиста.