Артикул: 1105842

Раздел:Технические дисциплины (68959 шт.) >
  Математика (25060 шт.) >
  Прикладная математика (61 шт.) >
  Теория игр (43 шт.)

Название или условие:
Игра "Поиск"
Игрок А может спрятаться в одном из убежишь I или II. Игрок В ищет игрока А. Если найдет, то получает от А штраф $1, если не найдет, то платит игроку А $1.

Изображение предварительного просмотра:

Игра "Поиск" <br /> Игрок А может спрятаться в одном из убежишь I или II. Игрок В ищет игрока А. Если найдет, то получает от А штраф $1, если не найдет, то платит игроку А $1.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Пример решения игры «с природой» в экономической задаче.
Дана таблица выигрышей в игре с природой
Определим оптимальную стратегию первого игрока по различным критериям:
1) по критерию максимального среднего выигрыша, если экспертные оценки вероятностей составляют р1, р2, р3, р4
2) по критерию Сэвиджа
3) По критерию Гурвица с показателем пессимизма λ = 1/4
4) По критерию Вальда

Дана платежная матрица с параметром.
Требуется найти:
2.1. Верхнюю и нижнюю цены игры.
2.2. Если есть решение в чистых стратегиях, то найти его.
2.3. Если нет решения в чистых стратегиях, то свести задачу к задаче линейного программирования для смешанных стратегий.
2.4. Решить задачу в смешанных стратегиях.
Вариант 4

Рассмотрим пример решения матричной игры со смешанным расширением. Платёжную матрицу игры составим на основе исходных данных примера 1, заменив лишь значения долей продукции предприятия 1, приобретаемой населением в зависимости от соотношений цен (табл). Определим по этим исходным данным разницу прибылей 1 и 2 предприятий от производства продукции по той же формуле. Получим следующую платёжную матрицу (рис) В данной матрице (рис. 2.12) нет доминируемых или дублирую-щих стратегий. Нижняя цена игры равна 0,175, а верхняя цена игры рав-на 0,24. Нижняя цена игры не равна верхней. Поэтому решения в чистых стратегиях не существует и для каждого из игроков необходимо найти оптимальную смешанную стратегию.
Приведите пример стратегического взаимодействия из вашей реальной жизни (укажите для этой игры – игроков; возможные стратегии участников; характер игры (с обоснованием): статическая или динамическая, с полной информацией или нет, с совершенной информацией или нет). Какое решение в этой игре было достигнуто в реальном мире? Попытайтесь объяснить - почему именно это решение реализовалось. Заполните пропуски в таблице так, чтобы в этой игре в чистых стратегиях было бы 3 равновесия по Нэшу. Найдите все равновесия в смешанных стратегиях (любым способом).
Дана платежная матрица игры двух лиц. Используя представления теории чистых стратегий, найдите гарантирующие оптимальные стратегии игроков, их гарантированные оптимальные эффективности; найдите точную цену игры, если она существует, или интервал значений платы пассивному игроку за его участие в игре.
Найти решение матричной игры с платежной матрицей
Найти верхнюю и нижнюю цену игры. Определить, имеет ли игра седловую точку?
Решить игру с платежной матрицей: