Артикул: 1111070

Раздел:Технические дисциплины (70679 шт.) >
  Математика (25127 шт.) >
  Прикладная математика (63 шт.) >
  Теория игр (45 шт.)

Название или условие:
Решить графически игру, заданную платежной матрицей

Изображение предварительного просмотра:

Решить графически игру, заданную платежной матрицей

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Решить задачу теории игр
Считаем, что игрок I выбирает свою стратегию так, чтобы получить максимальный свой выигрыш, а игрок II выбирает свою стратегию так, чтобы минимизировать выигрыш игрока I.
(3 страницы Word)

Найти оптимальную смешанную стратегию руководителя коммерческого предприятия и гарантированный средний выигрыш γ. При выборе из двух новых технологий продажи товаров А1 и А2, если известны выигрыши каждого вида продажи по сравнению со старой технологией, которые представлены в виде матрицы игры.
Решить игру с матрицей выигрышей
Ситуация 1. Определить верхнюю и нижнюю цену игры и, если возможно, то и седловую точку
На корабле 50 пиратов делят 100 кусков золота по следующему правилу: первым дележ предлагает капитан. Если хотя бы половина команды (включая капитана) согласна, то на этом игра и заканчивается. Если нет, то капитана выбрасывают за борт и дележ предлагает следующий по старшинству и т.д. Найдите совершенное подыгровое равновесие в этой игре. Ситуация 2. Найти оптимальные решения игроков в смешанных стратегиях
Принятие решения по выбору электростанции для строительства.
Необходимо выбрать проект электростанции.
Возможно строительство электростанций по четырем типам проектов: А1 -тепловые, А2 - приплотинные, А3 - бесшлюзовые, А4 - шлюзовые. Последствия строительства и эксплуатации электростанции каждого типа зависят от ряда неопределенных факторов, которые можно представить в виде различных состояний среды. Допустим, можно выделить четыре сочетания различных факторов, определяющих четыре состояния среды В1, В2, В3, В4. Экономическая эффективность электростанции, выраженная как процент прироста доходов в течение одного года эксплуатации электростанции, зависит как от типа электростанции, так и от состояния среды и задана матрицей

Двое бегут по лыжной трассе навстречу друг другу. У каждого лыжника 2 стратегии: «уступить» (У) и «не уступить» (Н). Если один из игроков уступает другому, то его потери - 9 секунд, второй – не теряет ничего; если же лыжники сталкиваются, то оба теряют 25 секунд.
a) Составьте платежную матрицу этой игры. Найдите равновесия в чистых стратегиях.
b) Нарисуйте линии откликов игроков и найдите смешанные равновесия в этой игре.
c) Допустим теперь, что у игроков теперь 3 стратегии: «не уступить», «уступить» и «уступить пол-лыжни». Если оба уступили друг другу пол-лыжни, то потери каждого 4 секунд, если же один уступил пол-лыжни, а второй - нет, то лыжники столкнутся, и потери при столкновении у уступившего – 29 секунд, у неуступившего - 4 секунды.
Найдите все равновесия по Нэшу (в чистых и в смешанных стратегиях).
Определить нижнюю и верхнюю цену игры, заданной платежной матрицей. Имеет ли игра седловую точку?
Приведите пример стратегического взаимодействия из вашей реальной жизни (укажите для этой игры – игроков; возможные стратегии участников; характер игры (с обоснованием): статическая или динамическая, с полной информацией или нет, с совершенной информацией или нет). Какое решение в этой игре было достигнуто в реальном мире? Попытайтесь объяснить - почему именно это решение реализовалось.