Артикул: 1111796

Раздел:Технические дисциплины (70963 шт.) >
  Математика (25238 шт.) >
  Прикладная математика (70 шт.) >
  Теория игр (52 шт.)

Название или условие:
На корабле 50 пиратов делят 100 кусков золота по следующему правилу: первым дележ предлагает капитан. Если хотя бы половина команды (включая капитана) согласна, то на этом игра и заканчивается. Если нет, то капитана выбрасывают за борт и дележ предлагает следующий по старшинству и т.д. Найдите совершенное подыгровое равновесие в этой игре.

Описание:
Подробное решение в WORD

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Решить графически игру, заданную платежной матрицей
Решить задачу теории игр
Считаем, что игрок I выбирает свою стратегию так, чтобы получить максимальный свой выигрыш, а игрок II выбирает свою стратегию так, чтобы минимизировать выигрыш игрока I.
(3 страницы Word)

Ситуация 2. Найти оптимальные решения игроков в смешанных стратегиях
Дана платежная матрица игры двух лиц. Используя представления теории чистых стратегий, найдите гарантирующие оптимальные стратегии игроков, их гарантированные оптимальные эффективности; найдите точную цену игры, если она существует, или интервал значений платы пассивному игроку за его участие в игре.
Определить нижнюю и верхнюю цену игры, заданной платежной матрицей. Имеет ли игра седловую точку?
Приведите пример стратегического взаимодействия из вашей реальной жизни (укажите для этой игры – игроков; возможные стратегии участников; характер игры (с обоснованием): статическая или динамическая, с полной информацией или нет, с совершенной информацией или нет). Какое решение в этой игре было достигнуто в реальном мире? Попытайтесь объяснить - почему именно это решение реализовалось.
Дана платежная матрица с параметром.
Требуется найти:
2.1. Верхнюю и нижнюю цены игры.
2.2. Если есть решение в чистых стратегиях, то найти его.
2.3. Если нет решения в чистых стратегиях, то свести задачу к задаче линейного программирования для смешанных стратегий.
2.4. Решить задачу в смешанных стратегиях.
Вариант 4

Найти решение матричной игры любым методом
Найти решение матричной игры с платежной матрицей
Конечная игра в нормальной форме задана следующей платежной матрицей. Найти верхнюю и нижнюю цены матричной игры.