Артикул: 1087745

Раздел:Технические дисциплины (60979 шт.) >
  Математика (24041 шт.) >
  Теория поля (121 шт.)

Название или условие:
Вычислить поток векторного поля a(M) = (x+z)i + (2y - x)j + zk через внешнюю поверхность пирамиды, образуемую плоскостью (p): x - 2y + 2z = 4 и координатными плоскостями, двумя способами: 1) использовав определение потока; 2) с помощью формулы Остроградского - Гаусса

Поисковые тэги: Формула Остроградского-Гаусса

Изображение предварительного просмотра:

Вычислить поток векторного поля a(M) = (x+z)i + (2y - x)j + zk через внешнюю поверхность пирамиды, образуемую плоскостью (p): x - 2y + 2z = 4 и координатными плоскостями, двумя способами: 1) использовав определение потока; 2) с помощью формулы Остроградского - Гаусса

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Показать, что поле F = (2xy + 3y2 + 9y)i + (x2 + 6xy + 9x)j является потенциальным, и найти потенциал этого поля
Найти векторные линии
Найти поток векторного поля a через замкнутую поверхность σ.
Вычислить поток векторного поля через внешнюю поверхность пирамиды, образуемой плоскостью p: x+3y+z=3 и координатными плоскостями, двумя способами 1) используя определение потока, 2) по формуле Остроградского-Гаусса.
Найти дивергенцию и ротор векторного поля а, выяснить, является ли данное поле потенциальным или соленоидальным, если да, то найти соответственно его скалярный или векторный потенциал и сделать проверку потенциала
a = ex+y(zi + zj + k)

Найти поток радиуса-вектора r = xi + yj + zk через замкнутую поверхность z = 1 - √(x2 + y2), z = 0 (0 ≤ z ≤ 1)
Скалярное поле образовано функцией
V = √(R2 - x2 - y2 - z2)
Найти поверхности уровни этого поля

Показать что поле вектора является потенциальным и найти его потенциал.
Найти циркуляцию векторного поля F = (x + 2y + 2z)i + (2x + z)j + (x - y)k по контуру треугольника MNP, где M(2;0;0), N(0;3;0), P(0;0;1)
Тело вращается вокруг оси с постоянной угловой скоростью ω. Найти вихрь скорости в произвольной точке тела.