Артикул: 1118554

Раздел:Технические дисциплины (76249 шт.) >
  Математика (28934 шт.) >
  Теория поля (158 шт.)

Название или условие:
Дано скалярное поле u (x, y, z). Найти div(grad u)

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Выяснить, является ли векторное поле a(M) = (x + y)i + (z - y)j + 2(x + z)k потенциальным.
Найти производную скалярного поля U в точке А по направлению к точке В
U = y2 - 2xy + 3x2 - 3xz + 8, A(1,0,0), B(3,-1,1)

Найти дивергенцию векторного поля
Найти дивергенцию векторного поля
F = x2i + y2j + z2k

Найти а) grad z в точке A(x,y), б) ее производную в направлении (AB): z=x2y+xy2 A(1,1) B(7,-7)
Найти производную функции u = z/x2 + (1 - x/y)z2 + √(yz) в точке A(1,1,0) в направлении AB, где B (3,2,2)
Вычислите поток векторного поля F = xi + yzj + xyzk через внешнюю сторону границы области, ограниченной поверхностями y = √x, y = 0, x + z = 1, z = 0
Скалярное поле образовано функцией
V = √(R2 - x2 - y2 - z2)
Найти поверхности уровни этого поля

Найти векторные линии
Найти поверхности уровня скалярного поля
υ = arctg(z/(√(x2 + y2)))