Артикул: 1114727

Раздел:Технические дисциплины (72720 шт.) >
  Математика (25952 шт.) >
  Теория поля (132 шт.)

Название или условие:
Требуется:
1) найти поток векторного поля F = Pi + Qj + Rk через замкнутую поверхность σ = σ1 + σ2 (выбирается внешняя нормаль к σ);
2) вычислить циркуляцию векторного поля F по контуру L, образованному пересечением поверхностей σ1 и σ2 (направление обхода выбирается так, чтобы область, ограниченная контуром L находилась слева);
3) проверить правильность вычисленных значений потока и циркуляции с помощью формул Гаусса и Стокса;
4) дать заключение о наличии источников или стоков внутри области, ограниченной поверхностью σ;
5) сделать чертеж поверхности σ .

Описание:
Подробное решение - 6 страниц

Поисковые тэги: Формула Стокса, Формула Остроградского-Гаусса

Изображение предварительного просмотра:

Требуется: <br />  1)  найти поток векторного поля F = Pi + Qj + Rk через замкнутую поверхность σ = σ<sub>1</sub> + σ<sub>2</sub> (выбирается внешняя нормаль к σ);  <br /> 2)  вычислить циркуляцию векторного поля F по контуру L, образованному пересечением поверхностей σ<sub>1</sub> и σ<sub>2 </sub>(направление обхода выбирается так, чтобы область, ограниченная контуром L находилась слева);  <br /> 3)  проверить правильность вычисленных значений потока и циркуляции с помощью формул Гаусса и Стокса; <br />  4)  дать заключение о наличии источников или стоков внутри области, ограниченной поверхностью σ;  <br /> 5)  сделать чертеж поверхности σ .

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Найти поток векторного поля a через замкнутую поверхность σ.
Скалярное поле определено функцией u = (x2/4) + (y2/9) + (z2/4). Найти градиент поля и построить поверхности уровня для u = 0, u = 1, u = 4, u = 5
Вычислите поток векторного поля F = xi + yzj + xyzk через внешнюю сторону границы области, ограниченной поверхностями y = √x, y = 0, x + z = 1, z = 0
Найти циркуляцию вектора F = -ωyi + ωxj по окружности x = acos(t), y = asin(t) в положительном направлении
Скалярное поле образовано функцией
V = √(R2 - x2 - y2 - z2)
Найти поверхности уровни этого поля

Найти поверхности уровня скалярного поля
υ = arctg(z/(√(x2 + y2)))

Найти производную функции u = z/x2 + (1 - x/y)z2 + √(yz) в точке A(1,1,0) в направлении AB, где B (3,2,2)
Найти ротор векторного поля
Показать что поле вектора является потенциальным и найти его потенциал.
Найти циркуляцию векторного поля F = (x + 2y + 2z)i + (2x + z)j + (x - y)k по контуру треугольника MNP, где M(2;0;0), N(0;3;0), P(0;0;1)