Артикул: 1122124

Раздел:Технические дисциплины (78582 шт.) >
  Математика (30169 шт.) >
  Теория поля (161 шт.)

Название или условие:
Вычислить поток векторного поля через внешнюю поверхность пирамиды, образуемой плоскостью p: x+3y+z=3 и координатными плоскостями, двумя способами 1) используя определение потока, 2) по формуле Остроградского-Гаусса.

Описание:
Подробное решение в WORD с чертежом

Поисковые тэги: Формула Остроградского-Гаусса

Изображение предварительного просмотра:

Вычислить поток векторного поля через внешнюю поверхность пирамиды, образуемой плоскостью p: x+3y+z=3  и координатными плоскостями, двумя способами 1) используя определение потока, 2)  по формуле Остроградского-Гаусса.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Требуется:
1) найти поток векторного поля F = Pi + Qj + Rk через замкнутую поверхность σ = σ1 + σ2 (выбирается внешняя нормаль к σ);
2) вычислить циркуляцию векторного поля F по контуру L, образованному пересечением поверхностей σ1 и σ2 (направление обхода выбирается так, чтобы область, ограниченная контуром L находилась слева);
3) проверить правильность вычисленных значений потока и циркуляции с помощью формул Гаусса и Стокса;
4) дать заключение о наличии источников или стоков внутри области, ограниченной поверхностью σ;
5) сделать чертеж поверхности σ .

Найти поток векторного поля a через замкнутую поверхность σ.
Найти циркуляцию векторного поля F = (x + 2y + 2z)i + (2x + z)j + (x - y)k по контуру треугольника MNP, где M(2;0;0), N(0;3;0), P(0;0;1)
Показать что поле вектора является потенциальным и найти его потенциал.
Дано скалярное поле u (x, y, z). Найти div(grad u)Найти поток вектора a = 3xi - 4yj + 7z2k
А) Через поверхность сферы x2 + y2 + z2 = 1
Б) Через площадь круга x2 + y2 = 3/4, z = 1/2

Найти потенциал ньютоновского поля притяженияНайти а) grad z в точке A(x,y), б) ее производную в направлении (AB): z=x2y+xy2 A(1,1) B(7,-7)
Найти векторные линии
Найти поток радиуса-вектора r = xi + yj + zk через внешнюю сторону поверхности прямого кругового цилиндра, если начало координат совпадает с центром нижнего основания цилиндра, R - радиус основания цилиндра, h - его высота