Артикул: 1067165

Раздел:Технические дисциплины (57837 шт.) >
  Сопротивление материалов (сопромат) (470 шт.) >
  Внецентренное растяжение (сжатие) (24 шт.)

Название или условие:
На брус заданного поперечного сечения в точке D верхнего торца действует продольная сжимающая сила Р=300 кН (рис). Требуется найти положение нулевой линии, определить наибольшие (растягивающие и сжимающие) напряжения и построить ядро сечения.

Описание:
Подробное решение в WORD - 5 страниц

Изображение предварительного просмотра:

На брус заданного поперечного сечения в точке D верхнего торца действует продольная сжимающая сила Р=300 кН (рис). Требуется найти положение нулевой линии, определить наибольшие (растягивающие и сжимающие) напряжения и построить ядро сечения.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Требуется:
- построить эпюру продольных сил;
- построить эпюру изгибающих моментов;
- определить опасное сечение бруса, вычислить σmax;
- проверить прочность бруса, если [σ] = 160 МПа;
Принять: l = 0,45м; b = 0, 105 м; h = 0,25 м; Рx = 25 кН; Рz = 42 кН.

Внецентренное растяжение или сжатие
Чугунный короткий стержень, поперечное сечение которого изображено на рис. 2.2, имеет размеры а = 3 cм, b = 2 см и сжимается продольной силой Р, приложенной в точке А. Допускаемые нормальные напряжения: на сжатие [δc] = 120 МПа; на растяжение [δр] = 30 МПа.
Требуется: 1) вычислить наибольшее растягивающее и наибольшее сжимающее напряжения в поперечном сечении, выразив величины этих напряжений через Р и размеры сечения;
2) найти допускаемую нагрузку (Р) при заданных размерах сечения и допускаемых напряжениях чугуна на сжатие [δc] и на растяжение [δр].

Расчет жесткого бруса на внецентренное сжатие
a = 0.3 м, Rраст. = 5 МПа, Rсж. = 13 МПа

Чугунный короткий стержень заданной формы поперечного сечения сжимается продольной силой, приложенной в указанной точке.
Требуется:
1) найти координаты центра тяжести сечения, положение главных осей и определить величины главных моментов инерции;
2) определить положение нейтральной линии и координаты наиболее напряженных растянутых и сжатых точек;
3) из условий прочности на растяжение и сжатие стержня определить допускаемую нагрузку F при допускаемых напряжениях чугуна на растяжение [σ]p = 30 МПа и на сжатие [σ]сж = 80 МПа;
4) вычислить наибольшее растягивающее и сжимающее напряжения и построить эпюру нормальных напряжений;
5) построить ядро сечений.

Внецентренное сжатие
Короткая колонна сжимается продольной силой F, приложенной в точке В поперечного сечения.
Дано: F = 200 кН; a = 40 см; b = 50 см; zF = -14 см; yF = 15 см.
Требуется:
1) определить положение нулевой линии;
2) вычислить наибольшие по абсолютной величине сжимающие и растягивающие напряжения и построить эпюру напряжений;
3) проверить прочность колонны, принимая допускаемые напряжения при растяжении - [σ]+ = 3 МПа; при сжатии - [σ]- = 30 МПа;
4) найти допускаемую нагрузку [F] при заданных размерах сечения;
5) построить ядро сечения.

Какого диаметра d следует взять, стержень В (рис), к которому приложена эксцентричная растягивающая сила F=4кН при плече ℓ=250мм, чтобы наибольшее напряжение растяжения не превосходило 70 Н/мм2.
Для внецентренно сжатого короткого стержня с заданным поперечным сечением и точкой приложения силы требуется:
1.Определить площадь поперечного сечения и положение центра тяжести;
2.Определить моменты инерции и радиусы инерции относительно главных центральных осей;
3.Определить положение нулевой линии;
4.Определить грузоподъемность колонны (величину наибольшей сжимающей силы) из условия прочности по методу предельных состояний, приняв расчетные сопротивления мaтериала при растяжении Rр = 1 МПа, при сжатии Rс = 5 МПа, коэффициент условий работы γс = 1;
5.Построить эпюру нормальных напряжений в поперечном сечении от действия найденной расчетной силы;
6.Построить эпюру напряжений в основании стержня с учетом его собственного веса. Высота стержня - H, объемный вес материала - γ;
7.Построить контур ядра сечения.

Дано напряжения на произвольных площадках
σx = 30МПа σy = - 30 МПа τxy = - 30 МПа
Характеристики материала E = 2 * 105 МПа ν = 0,3
Определить угол поворота главных площадок, главные напряжения, максимальные касательные напряжения, относительную деформацию вдоль главных осей, объемную деформацию

Чугунный короткий стержень, поперечное сечение которого изображено на рис.5.1, сжимается продольной силой F, приложенной в точке А.
Требуется:
1) вычислить наибольшее растягивающее и наибольшее сжимающее напряжения в поперечном сечении, выразив эти напряжения через F и размеры сечения;
2) найти допускаемую нагрузку F при заданных размерах сечения и допускаемых напряжениях для чугуна на сжатие [σс] и на растяжение [σр].

Плоское напряженное состояние в точке тела.
Стальной кубик находится под действием сил, создающих плоское напряженное состояние (одно из трех главных напряжений равно нулю).
Требуется найти:
1) главные напряжения и направление главных площадок;
2) максимальные касательные напряжения, равные наибольшей полуразности главных напряжений;
3) относительные деформации εх, εу, εz;
4) относительное изменение объема;
5) удельную потенциальную энергию деформаций.
Исходные данные для решения задачи:
схема кубика показана на рис. 6.
Заданные напряжения:
σx = 10 МПа, σy =100 МПа, Тxy = 20 МПа