Артикул: 1022394

Раздел:Технические дисциплины (57837 шт.) >
  Теоретическая механика (теормех, термех) (1461 шт.) >
  Динамика (237 шт.)

Название или условие:
Принцип Даламбера.
Вертикальный вал вращающийся с постоянной угловой скоростью ω = 10 c−1 , закреплен подпятником в точке A и цилиндрическим подшипником в точке, указанной в табл. 9 (AB=BD=DE=EK=b). К валу жестко прикреплены невесомый стержень 1 длиной l1 = 0,4 м с точечной массой m1 = 6 кг на конце и однородный стержень 2 длиной 2l = 0,6 м, имеющий массу m2 = 4 кг; вал и оба стержня лежат в одной плоскости. Точки крепления стержней к валу и углы между стержнями и валом (α и β) указаны в таблице.
Пренебрегая весом вала, определить реакции связей. При окончательных подсчетах принять b = 0,4 м.
Вариант А = 4, Б = 2, В = 2
Дано: подшипник в точке К, точка крепления стержня 1 – Е, точка крепления стержня 2 – Е, α = 90°,β = 75°

Описание:
Подробное решtние в WORD

Поисковые тэги: Принцип Даламбера

Изображение предварительного просмотра:

Принцип Даламбера. <br />Вертикальный вал вращающийся с постоянной угловой скоростью ω = 10 c<sup>−1</sup> , закреплен подпятником в точке A и цилиндрическим подшипником в точке, указанной в табл. 9 (AB=BD=DE=EK=b). К валу жестко прикреплены невесомый стержень 1 длиной l1 = 0,4 м с точечной массой m<sub>1</sub> = 6 кг на конце и однородный стержень 2 длиной 2l = 0,6 м, имеющий массу m<sub>2</sub> = 4 кг; вал и оба стержня лежат в одной плоскости. Точки крепления стержней к валу и углы между стержнями и валом (α и β) указаны в таблице. <br /> Пренебрегая весом вала, определить реакции связей. При окончательных подсчетах принять b = 0,4 м. <br />Вариант А = 4, Б = 2, В = 2 <br />Дано: подшипник в точке К, точка крепления стержня 1 – Е, точка крепления стержня 2 – Е, α = 90°,β = 75°

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Задача Д2
4.2.1. Условия задачи. Механическая система (рис. 4.3) включает два ступенчатых шкива 1,2, обмотанных нитями, грузы 3, 4, 5, 6, прикрепленные к этим нитям, и невесомый блок, предназначенный для изменения направления нити. Система движется в вертикальной плоскости под действием сил тяжести грузов и пары сил с моментом М, приложенной к одному из шкивов.
Радиусы внешних ступеней шкивов R1 и R2, веса шкивов Р1, Р2 и грузов Р3, Р4, Р5, Р6, а также величина момента М для конкретных вариантов задачи приведены в табл. Д2. Радиусы внутренних ступеней шкивов ri = 0,5Ri (i = 1,2), радиусы инерции шкивов относительно осей вращения ρi = 0,6Ri.
Пренебрегая силами трения и считая нити нерастяжимыми, определить:
- линейные ускорения грузов;
- угловые ускорения шкивов;
- силы натяжения нитей на участках между грузами и шкивами.
Провести проверку и оценить погрешность решения с помощью уравнения движения шкива, к которому приложен момент М.
Вариант 789

Задача Д1
Груз D массой m, получив в точке А начальную скорость υ0, движется в изогнутой трубе ABC, расположенной в вертикальной плоскости; участки трубы или оба наклонные, или один горизонтальный, а другой наклонный (рис. Д1.0 – Д1.9, табл. Д1). На участке АВ, на груз кроме силы тяжести, действуют постоянная сила Q (ее направление показано на рисунках) и сила сопротивления среды R, зависящая от скорости v груза (направлена против движения); трением груза о трубу на участке АВ пренебречь.
В точке В груз, не изменяя своей скорости, переходит на участок ВС трубы, где на него, кроме силы тяжести, действуют сила трения (коэффициент трения груза о трубу f = 0,2) и переменная сила F, проекция которой Fx на ось х задана в таблице. Считая груз материальной точкой и зная расстояние АВ = l или время t1 движения груза от точки А до точки В, найти закон движения груза на участке ВС, т. е. x = f(t), где x = BD
Вариант 75

Задача №4
Движение самолета по взлетно-посадочной полосе при взлете определяется взлетной массой m, тягой двигателей P, сопротивлением движению |Fсоп|=6.1 кН и может характеризоваться параметрами: ускорение a, время разбега tр = 35.2 c, длина разбега L = 1050 м, количество движения в момент отрыва Q = 2950·103 (кг·м)/с.
Считая силы P и Fсоп при движении самолета постоянными, определить остальные параметры.

Задача Д1
Динамика точки

Твердое тело, размерами которого в данной задаче можно пренебречь, движется из точки А по участку АВ (длиной l) по наклонной поверхности, составляющей угол α с горизонтом, в течение τ секунд. Его начальная скорость VA. Коэффициент трения скольжения тела по плоскости равен f.
В точке В тело покидает плоскость со скоростью VB и попадает со скоростью VB в точку С плоскости BD, наклоненной под углом β к горизонту, находясь в воздухе Т секунд. Сопротивление воздуха не учитывать.
Вариант 1
Дано: α = 30°; VA= 1 м/с ; f = 0.3; l=10 м; β= 60°;
Определить время τ и высоту h

Задача Д1 Вариант 1
Груз М массой m=4,5кг, получив в точке А начальную скорость V0=18м/с, движется в изогнутой трубе АВС, расположенной в вертикальной плоскости. На участке АВ на груз кроме силы тяжести P действует постоянная сила Q (Q=9Н) и сила сопротивления среды R, зависящая от скорости v груза, R=0,45V; трением груза о трубу на этом участке пренебречь.
В точке В груз, изменив направление приобретенной скорости, но сохранив при этом ее величину, переходит на участок ВС трубы, где на него кроме силы тяжести действуют силы трения (коэффициент трения груза о трубу f = 0,2) и переменная по величине сила F, направленная вдоль участка ВС, проекция которой на ось Вх: Fx =3sin(2t).
Считая груз материальной точкой и зная время t1=5c движения груза от точки А до точки В, найти уравнение х=х(t) движения груза на участке ВС.

Задача Д3
Механическая система состоит из грузов 1 и 2 (коэффициент трения грузов о плоскость f =0.1), цилиндрического сплошного однородного катка 3 и ступенчатых шкивов 4 и 5 с радиусами ступеней R4 = 0.3 м, r4 = 0,1 м, R5 = 0,2 м, r5 = 0.1 м (массу каждого шкива считать равномерно распределенной по его внешнему ободу). Тела системы соединены друг с другом нитями, намотанными на шкивы, участки нитей параллельны соответствующим плоскостям.
Под действием силы F = f(s), зависящей от перемещения точки приложения силы, система приходит в движение из состояния покоя. При движении системы на шкивы 4 и 5 действуют постоянные моменты сил сопротивлений, равные соответственно М4 и М5.
Определить значение искомой величины в тот момент времени, когда перемещение точки приложения силы F равно s1.
Вариант 34

Задача Д1
Груз D массой m=3кг, получив в точке А начальную скорость V0=22м/с, движется в изогнутой трубе АВС, расположенной в вертикальной плоскости. На участке АВ на груз кроме силы тяжести P действует постоянная сила Q (Q=9Н). и сила сопротивления среды R, зависящая от скорости v груза, R=0.5·V (направлена против движения).
В точке В груз, не меняя своей скорости, переходит на участок ВС трубы, где на него кроме силы тяжести действует переменная сила F, проекция которой на ось X: Fx =4sin(2t).
Считая груз материальной точкой и зная расстояние время t1 = 3с движения груза от точки А до точки В, найти закон движения груза на участке ВС, т.е. X=f(t), где X=ВD. Трением груза о трубу пренебречь.
Вариант 99

Задача Д1
4.1.1. Условия задачи. Барабан радиусом R и весом Р (рис. 4.1), имеющий выточку радиусом r = 0,6R с намотанным на нее тросом, находится в зацеплении с наклонной плоскостью (может катиться по плоскости без проскальзывания). Угол между наклонной плоскостью и горизонталью α. Радиус инерции барабана с тросом ρ = 0,5R.
На барабан помимо силы веса P действуют следующие активные (заданные) нагрузки:
- сила натяжения троса T, действующая по касательной к выточке, точка ее приложения задается углом β, отсчитываемым от нормали к плоскости, как показано на рис. 4.1;
- горизонтальная сила Q, приложена к оси С барабана;
- пара сил с моментом М.
Численные значения характеристик плоскости, барабана и заданных нагрузок для различных вариантов задачи приведены в табл. Д1.
Под действием указанных сил барабан начинает движение из состояния покоя.
Вариант 789

Общие теоремы динамики материальной точки
Шарик массы m движется из положения А внутри изогнутой трубки, расположенной в вертикальной плоскости. Шарик, пройдя путь 1, отделяется от пружины. В точке В шарик, не меняя значения своей скорости, переходит на участок ВС, где на него дополнительно действует переменная сила F, направление которой указано на рисунке. Пользуясь общими теоремами динамики точки, определить скорость шарика в положениях В и С. В задании приняты следующие обозначения: 1 - начальная скорость шарика, АВ - длина участка, 7 - время движения на участке ВС, f - коэффициент трения скольжения шарика по стенке трубки, с коэффициент жесткости пружины.
Вариант 8

Общие теоремы динамики материальной точки
Шарик массы т движется из положения А внутри изогнутой трубки, расположенной в вертикальной плоскости. Шарик, пройдя путь 1, отделяется от пружины. В точке В шарик, не меняя значения своей скорости, переходит на участок ВС, где на него дополнительно действует переменная сила F, направление которой указано на рисунке. Пользуясь общими теоремами динамики точки, определить скорость шарика в положениях В и С. В задании приняты следующие обозначения: 1 - начальная скорость шарика, АВ - длина участка, 7 - время движения на участке ВС, f - коэффициент трения скольжения шарика по стенке трубки, с коэффициент жесткости пружины.
Вариант 9