Артикул: 1022394

Раздел:Технические дисциплины (57837 шт.) >
  Теоретическая механика (теормех, термех) (1461 шт.) >
  Динамика (237 шт.)

Название или условие:
Принцип Даламбера.
Вертикальный вал вращающийся с постоянной угловой скоростью ω = 10 c−1 , закреплен подпятником в точке A и цилиндрическим подшипником в точке, указанной в табл. 9 (AB=BD=DE=EK=b). К валу жестко прикреплены невесомый стержень 1 длиной l1 = 0,4 м с точечной массой m1 = 6 кг на конце и однородный стержень 2 длиной 2l = 0,6 м, имеющий массу m2 = 4 кг; вал и оба стержня лежат в одной плоскости. Точки крепления стержней к валу и углы между стержнями и валом (α и β) указаны в таблице.
Пренебрегая весом вала, определить реакции связей. При окончательных подсчетах принять b = 0,4 м.
Вариант А = 4, Б = 2, В = 2
Дано: подшипник в точке К, точка крепления стержня 1 – Е, точка крепления стержня 2 – Е, α = 90°,β = 75°

Описание:
Подробное решtние в WORD

Поисковые тэги: Принцип Даламбера

Изображение предварительного просмотра:

Принцип Даламбера. <br />Вертикальный вал вращающийся с постоянной угловой скоростью ω = 10 c<sup>−1</sup> , закреплен подпятником в точке A и цилиндрическим подшипником в точке, указанной в табл. 9 (AB=BD=DE=EK=b). К валу жестко прикреплены невесомый стержень 1 длиной l1 = 0,4 м с точечной массой m<sub>1</sub> = 6 кг на конце и однородный стержень 2 длиной 2l = 0,6 м, имеющий массу m<sub>2</sub> = 4 кг; вал и оба стержня лежат в одной плоскости. Точки крепления стержней к валу и углы между стержнями и валом (α и β) указаны в таблице. <br /> Пренебрегая весом вала, определить реакции связей. При окончательных подсчетах принять b = 0,4 м. <br />Вариант А = 4, Б = 2, В = 2 <br />Дано: подшипник в точке К, точка крепления стержня 1 – Е, точка крепления стержня 2 – Е, α = 90°,β = 75°

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Задача Д3
Механическая система состоит из грузов 1 и 2 (коэффициент трения грузов о плоскость f =0.1), цилиндрического сплошного однородного катка 3 и ступенчатых шкивов 4 и 5 с радиусами ступеней R4 = 0.3 м, r4 = 0,1 м, R5 = 0,2 м, r5 = 0.1 м (массу каждого шкива считать равномерно распределенной по его внешнему ободу). Тела системы соединены друг с другом нитями, намотанными на шкивы, участки нитей параллельны соответствующим плоскостям.
Под действием силы F = f(s), зависящей от перемещения точки приложения силы, система приходит в движение из состояния покоя. При движении системы на шкивы 4 и 5 действуют постоянные моменты сил сопротивлений, равные соответственно М4 и М5.
Определить значение искомой величины в тот момент времени, когда перемещение точки приложения силы F равно s1.
Вариант 34

Найдите ускорение тела (1)
9. Груз массой m = 10 кг опускается вертикально на парашюте без начальной скорости. Сопротивление воздуха пропорционально скорости R=-20v Определить скорость груза в момент времени t = 1 с.Задача Д8
Вертикальный вал АК, вращающийся с постоянной угловой скоростью ω = 10 c-1, закреплен подпятником в точке А и цилиндрическим подшипником в точке, указанной в табл. Д8 в столбце 2 (AB = BD = DE = EK = a). К валу жестко прикреплены тонкий однородный ломаный стержень массой m = 10 кг, состоящий из частей 1 и 2 (размеры частей стержня показаны на рисунках, где b = 0.1 м, а их массы m1 и m2 пропорциональны длинам), и невесомый стержень длиной l = 4b с точечной массой m3 = 3 кг на конце; оба стержня лежат в одной плоскости. Точки крепления стержней указаны в таблице в столбцах 3 и 4, а углы α, β, γ, φ даны в столбцах 5-8.
Пренебрегая весом вала, определить реакции подпятника и подшипника. При подсчетах принять a = 0.6 м.
Вариант 75

Задача Д1
Груз D массой m=3кг, получив в точке А начальную скорость V0=22м/с, движется в изогнутой трубе АВС, расположенной в вертикальной плоскости. На участке АВ на груз кроме силы тяжести P действует постоянная сила Q (Q=9Н). и сила сопротивления среды R, зависящая от скорости v груза, R=0.5·V (направлена против движения).
В точке В груз, не меняя своей скорости, переходит на участок ВС трубы, где на него кроме силы тяжести действует переменная сила F, проекция которой на ось X: Fx =4sin(2t).
Считая груз материальной точкой и зная расстояние время t1 = 3с движения груза от точки А до точки В, найти закон движения груза на участке ВС, т.е. X=f(t), где X=ВD. Трением груза о трубу пренебречь.
Вариант 99

Общие теоремы динамики материальной точки
Шарик массы т движется из положения А внутри изогнутой трубки, расположенной в вертикальной плоскости. Шарик, пройдя путь 1, отделяется от пружины. В точке В шарик, не меняя значения своей скорости, переходит на участок ВС, где на него дополнительно действует переменная сила F, направление которой указано на рисунке. Пользуясь общими теоремами динамики точки, определить скорость шарика в положениях В и С. В задании приняты следующие обозначения: 1 - начальная скорость шарика, АВ - длина участка, 7 - время движения на участке ВС, f - коэффициент трения скольжения шарика по стенке трубки, с коэффициент жесткости пружины.
Вариант 9

Задача Д1
Автомобиль М массой m имея в точке А начальную скорость V0, движется по трассе АВС и мосту СД. Участки АВ и ВС наклонные.
На участке АВ на автомобиль действует постоянная сила трения Fтр, а также постоянная сила F. В точках В и С автомобиль не изменяет величину своей скорости. Мост образует дугу окружности радиуса R. Максимальный прогиб моста h.
Считая автомобиль материальной точкой, определить:
1. Скорости автомобиля в точках В,С трассы и точке К моста
2. Силу давления автомобиля на мост, когда он находится в точке К
3. Установить, находится или нет автомобиль в точке К в отрыве от моста.
Вариант 44

Задача Д6
Механическая система состоит из грузов 1 и 2, ступенчатого шкива 3 с радиусами ступеней R3 = 0,3 м, r3 = 0,1 м и радиусом инерции относительно оси вращения ρ3 = 0,2м, блока 4 радиуса R4 = 0,2 м и катка (или подвижного блока) 5 (рис. Д4.0 – Д4.9, табл. Д4); тело 5 считать сплошным однородным цилиндром, а массу блока 4 – равномерно распределенной по ободу. Коэффициент трения грузов о плоскость f = 0,1. Тела системы соединены друг с другом нитями, перекинутыми через блоки и намотанными на шкив 3 (или на шкив и каток); участки нитей параллельны соответствующим плоскостям. К одному из тел прикреплена пружина с коэффициентом жесткости с.
Под действием силы F = f(s), зависящей от перемещения s точки ее приложения, система приходит в движение из состояния покоя; деформация пружины в момент начала движения равна нулю. При движении на шкив 3 действует постоянный момент М сил сопротивления (от трения в подшипниках).
Определить значение искомой величины в тот момент времени, когда перемещение s станет равным s1 = 0,2 м. Искомая величина указана в столбце «Найти» таблицы, где обозначено: υ1, υ2, υС5 – скорости грузов 1, 2 и центра масс тела 5 соответственно, ω3 и ω4 – угловые скорости тел 3 и 4.
Все катки, включая и катки, обмотанные нитями (как, например, каток 5 на рис. 1), катятся по плоскостям без скольжения.
Вариант 75

Д3.
Шарик, принимаемый за материальную точку, движется из положения А внутри трубки, ось которой расположена в вертикальной плоскости(рис.1.3). Найти максимальное сжатие пружины hmax.
Вариант 1.
Дано: m=0.1кг, VA=12м/с, τ=0.2c, R=0.5м, f=0.05, c=0.9H/см=90H/м, α=30°, β=75°.
Определить: hmax-?

Задача 25
Груз массой m, двигаясь по наклонной плоскости, под действием силы F проходит путь S за время t. Считая движение груза равноускоренным с начальной скоростью V0 = 0 м/с, определить величину силы F, если коэффициент трения равен f.