Артикул: 1021169

Раздел:Технические дисциплины (57837 шт.) >
  Теоретическая механика (теормех, термех) (1461 шт.) >
  Динамика (237 шт.)

Название или условие:
Задача Д11 из сборника Тарга, вариант 00
Дано: R1 = R2 = R, r1 = 0,4 R, r2 = 0,8 R, c, P1 = 4P, P2 = 0, P4 = 3P, F = 4P, M1 = 0, M2 = 0. Найти: x = f(t) - закон изменения обобщенной координаты; частоту k и период t колебаний.

Поисковые тэги: Задачник Тарга 1989г.

Изображение предварительного просмотра:

Задача Д11 из сборника Тарга, вариант 00<br /> Дано:  R<sub>1</sub> = R<sub>2</sub> = R, r<sub>1</sub> = 0,4 R, r<sub>2</sub> = 0,8 R, c, P<sub>1</sub> = 4P, P<sub>2</sub> = 0, P<sub>4</sub> = 3P, F = 4P, M<sub>1</sub> = 0, M<sub>2</sub> = 0. Найти: x = f(t) - закон изменения обобщенной координаты; частоту k и период  t колебаний.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Задача 3.2
Вертикальный вал АВ (рис.1.2), вращающийся с постоянной угловой скоростью ω, закреплен подпятником в точке А и цилиндрическим подшипником в точке В К валу жестко прикреплен невесомый стержень длиной l с точечной массой m на конце. Пренебрегая весом вала, определить реакции подпятника А и подшипника В.
Вариант 5
Дано: ω=10c-1-const, l=0.4м, a=b=0.6м, m=2кг, α=60°, g≈10м/c2.
Определить: YA, ZA, RB-?

Задача Д2
4.2.1. Условия задачи. Механическая система (рис. 4.3) включает два ступенчатых шкива 1,2, обмотанных нитями, грузы 3, 4, 5, 6, прикрепленные к этим нитям, и невесомый блок, предназначенный для изменения направления нити. Система движется в вертикальной плоскости под действием сил тяжести грузов и пары сил с моментом М, приложенной к одному из шкивов.
Радиусы внешних ступеней шкивов R1 и R2, веса шкивов Р1, Р2 и грузов Р3, Р4, Р5, Р6, а также величина момента М для конкретных вариантов задачи приведены в табл. Д2. Радиусы внутренних ступеней шкивов ri = 0,5Ri (i = 1,2), радиусы инерции шкивов относительно осей вращения ρi = 0,6Ri.
Пренебрегая силами трения и считая нити нерастяжимыми, определить:
- линейные ускорения грузов;
- угловые ускорения шкивов;
- силы натяжения нитей на участках между грузами и шкивами.
Провести проверку и оценить погрешность решения с помощью уравнения движения шкива, к которому приложен момент М.
Вариант 789

Определить скорость V3
Определить:
1. главный вектор сил инерции блока 2;
2. главный момент сил инерции блока 2;
3. натяжение нити между грузом и блоком;
4. массу груза 1;
5. минимальную массу груза 1, при которой система будет находиться в покое.
Вариант 22

Задача Д1
Автомобиль М массой m имея в точке А начальную скорость V0, движется по трассе АВС и мосту СД. Участки АВ и ВС наклонные.
На участке АВ на автомобиль действует постоянная сила трения Fтр, а также постоянная сила F. В точках В и С автомобиль не изменяет величину своей скорости. Мост образует дугу окружности радиуса R. Максимальный прогиб моста h.
Считая автомобиль материальной точкой, определить:
1. Скорости автомобиля в точках В,С трассы и точке К моста
2. Силу давления автомобиля на мост, когда он находится в точке К
3. Установить, находится или нет автомобиль в точке К в отрыве от моста.
Вариант 99

Найти: V3 с помощью общего уравнения динамики
Курсовая работа по теоретической механике
ЗАДАНИЕ 39
Система состоит из однородного стержня OA длины l и массы m1 и невесомой платформы ED, несущей ползун B массы m2, который перемещается вдоль нее без трения под действием растяжения-сжатия двух одинаковых пружин жесткости с2. К ползуну приложена постоянная по величине вертикальная сила P. Платформа вместе со стержнем образует твердое тело, которое может поворачиваться вокруг опорного шарнира, имеющего спиральную пружину жесткости c1 (рис. 39).

Динамика точки. Вариант 8
На тело массой m, движущееся по горизонтальной гладкой поверхности вдоль оси x, действует сила, проекция которой равна Fx = −0,5x. В начальный момент x0 = 0, v0x = 10 м⁄с. Определить максимальное значение координаты x тела
Задача №4
Движение самолета по взлетно-посадочной полосе при взлете определяется взлетной массой m, тягой двигателей P, сопротивлением движению |Fсоп|=6.1 кН и может характеризоваться параметрами: ускорение a, время разбега tр = 35.2 c, длина разбега L = 1050 м, количество движения в момент отрыва Q = 2950·103 (кг·м)/с.
Считая силы P и Fсоп при движении самолета постоянными, определить остальные параметры.

Задача Д1
Груз D массой m=4.8кг, получив в точке А начальную скорость V0=10м/с, движется в изогнутой трубе АВС, расположенной в вертикальной плоскости. На участке АВ на груз кроме силы тяжести P действует постоянная сила Q (Q=10Н). и сила сопротивления среды R, зависящая от скорости v груза, R=0.2·V2 (направлена против движения).
В точке В груз, не меняя своей скорости, переходит на участок ВС трубы, где на него кроме силы тяжести действует переменная сила А, проекция которой на ось X: Fx =4cos(2t).
Считая груз материальной точкой и зная расстояние АВ=l=4м движения груза от точки А до точки В, найти закон движения груза на участке ВС, т.е. X=f(t), где X=ВD. Трением груза о трубу пренебречь.
Вариант 88