Артикул: 1000217

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Теория вероятности (2126 шт.) >
  Теория вероятности и математическая статистика (ТВиМС) (1013 шт.)

Название или условие:
Изучение экстраполяционного метода прогнозирования

Описание:
Содержание

Задание
1. Ознакомиться с экстраполяционным методом прогнозирования.
2. По заданному варианту задания (таблица 2.1) записать динамический ряд в таблицу EXCEL, построить его в виде графика.
3. Сгладить исходный ряд для выявления тенденций .
4. Найти , , , , . Построить по полученным данным графики. По минимуму их отличия от прямой линии выбрать вид кривой.
5. Методом наименьших квадратов найти параметры прямой.
6. Обратным преобразованием определить параметры интерполирующей кривой, которую построить на исходном графике.
Заполнить таблицу 2.2.
7. Найти значение прогнозируемой величины с упреждением на интервалов, доверительный интервал.
8. Оформить отчет по работе.

Введение
Порядок выполнения работы
1. Экполяционный метод прогнозирования. Последовательность составления прогноза экстраполяционным методом
1.1.Выявление тенденций рассматриваемого процесса
1.2. Выбор формы кривой
1.3. Функции, применяемые при описании динамического ряда
1.4. Оценивание параметров кривых методом наименьших квадратов
1.5.Экстраполяция тренда и доверительные интервалы прогноза
2. Динамический ряд и его графическое представление
3. Сглаживание исходного ряда для выявления тенденций
4. Находим средние приросты первого и второго порядка , и , ,
5. Методом наименьших квадратов находим параметры прямой, описывающей исследуемый процесс
6. Методом наименьших квадратов находим параметры экспоненциальной кривой, описывающей исследуемый процесс
7. Определение квадратического отклонения для аппроксимирующей прямой и экспоненциальной кривой
8. Определение доверительного интервала для прогноза
Заключение
Список использованных источников



Поисковые тэги: Теория вероятности и математическая статистика (ТВиМС)

Изображение предварительного просмотра:

Изучение экстраполяционного метода прогнозирования

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Случайная величина X задана функцией распределения. Найти: плотность вероятности f(x), вероятность попадания случайной величины в интервал (-1;1), среднеквадратическое отклонение Х. Построить графики плотности распределения и функции распределения.
Авиакомпания знает, что в среднем 5% людей, делающих предварительный заказ на определенный рейс, не будет его использовать. Если авиакомпания продала 160 билетов на самолет, в котором лишь 155 мест, чему равна вероятность того, что место будет доступно для любого пассажира, имеющего заказ и планирующего улететь?
Два баскетболиста делают по три броска мячом в корзину. Вероятности попадания мяча при каждом броске равны соответственно 0,8 и 0,6. Найти вероятность того, что у первого будет больше попаданий, чем у второго.Заданы среднее квадратическое отклонение σ=2 нормальной распределенной случайной величины Х, выборочная средняя Xв и объем выборки n=16.
Требуется:
1) найти доверительный интервал для оценки неизвестного математического ожидания а с доверительной вероятностью γ=0,95;
2) принимая α≈Xв , написать теоретическую плотность распределения вероятностей и схематично построить ее график;
3) следуя правилу «трех сигм», определить приближенно максимальное и минимальное значения случайной величины Х;
4) оценить вероятность того, что Х примет значение, превышающее β=19.
Рабочий обслуживает три однотипных станка. Вероятность того, что любой станок в течение часа потребует внимания рабочего, равна 0,4. Предполагая, что станки работают независимо, найти вероятность того, что в течение часа потребуют внимания, по крайней мере, два станка.Команда состоит из трех баскетболистов. Вероятность попадания в кольцо для первого баскетболиста равна 0,8, для второго баскетболиста она равна 0,9, и третий баскетболист попадает в кольцо с вероятностью 0,7. Баскетболисты бросили в корзину по одному мячу. За каждое попадание в корзину начисляется 15 у.е. Составить закон распределения числа начисленных баскетболистам у.е. Найти вероятность того, что баскетболисты наберут не менее 20 у.е.
В партии из 10 деталей 6 бракованных. Определить вероятность того, что среди выбранных наудачу 5 изделий ровно 2 окажутся бракованнымиВычислить вероятность того, что при бросании двух игральных костей сумма очков на верхних гранях будет равна 8, если известно, что разность меньше 3.
В урне лежит 7 шаров, из них 2 белых. Вынимают 4 шара. Найти закон распределения, математическое ожидание, дисперсию и среднее квадратическое отклонение числа Х вынутых белых шаров. Построить график функции распределения ХВ магазине 9 тетрадей с машинами на обложке: 2 тетради с ауди, 4 с мерседесом и 3 с автомобилем BMW. Купили 6 тетрадей. Пусть X – число тетрадей с автомобилем BMW на обложке среди купленных тетрадей. Найди значение выражения C[1-2X]-M[4X-3]