Артикул: 1000212

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Теория вероятности (2126 шт.) >
  Теория вероятности и математическая статистика (ТВиМС) (1013 шт.)

Название или условие:
Найти математическое ожидание для заданной функции плотности случайной величины

Описание:
Функция плотности f(x) непрерывной случайной величины X имеет заданный вид. Найти математическое ожидание E(X)


Поисковые тэги: Теория вероятности и математическая статистика (ТВиМС)

Изображение предварительного просмотра:

Найти математическое ожидание для заданной функции плотности случайной величины

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Авиакомпания знает, что в среднем 5% людей, делающих предварительный заказ на определенный рейс, не будет его использовать. Если авиакомпания продала 160 билетов на самолет, в котором лишь 155 мест, чему равна вероятность того, что место будет доступно для любого пассажира, имеющего заказ и планирующего улететь?Команда состоит из трех баскетболистов. Вероятность попадания в кольцо для первого баскетболиста равна 0,8, для второго баскетболиста она равна 0,9, и третий баскетболист попадает в кольцо с вероятностью 0,7. Баскетболисты бросили в корзину по одному мячу. За каждое попадание в корзину начисляется 15 у.е. Составить закон распределения числа начисленных баскетболистам у.е. Найти вероятность того, что баскетболисты наберут не менее 20 у.е.
В партии из 10 деталей 6 бракованных. Определить вероятность того, что среди выбранных наудачу 5 изделий ровно 2 окажутся бракованными35% всех кошек – рыжие, 15% – белые, 10% – черные, а остальные – пестрые. Найти вероятность того, что три наудачу взятые кошки одинакового окраса.
В магазине 9 тетрадей с машинами на обложке: 2 тетради с ауди, 4 с мерседесом и 3 с автомобилем BMW. Купили 6 тетрадей. Пусть X – число тетрадей с автомобилем BMW на обложке среди купленных тетрадей. Найди значение выражения C[1-2X]-M[4X-3]Среди поступающих на сборку деталей с первого автомата 0,1% брака, со второго – 0,2%, с третьего – 0,25%. Производительности их относятся как 5:3:3. Найти вероятность того, взятая наудачу деталь окажется бракованной.
Для приведенных группированных выборок, приняв 10%-ный уровень значимости, проверить гипотезу Н0 о том, что они получены из нормально распределенной генеральной совокупности.
Величина контрольного размера 68 деталей, изготовленных на одном станке (мм):

Случайная величина X задана функцией распределения. Найти: плотность вероятности f(x), вероятность попадания случайной величины в интервал (-1;1), среднеквадратическое отклонение Х. Построить графики плотности распределения и функции распределения.
Из десяти билетов 4 выигрышных. Приобретается четыре билета. Какова вероятность того, что: хотя бы один из них невыигрышный; не менее трёх выигрышных; все выигрышные? Даны результаты выборочных наблюдений случайной величины. Найти несмещенные оценки математического ожидания, дисперсии и среднего квадратического отклонения. Считая случайно величину нормально распределенной, с надежностью 0,95 найти интервальную оценку для ее математического ожидания при известном среднем квадратическом отклонении (σ=2) и при неизвестном среднем квадратическом отклонении