Артикул: 1000205

Раздел:Технические дисциплины (57837 шт.) >
  Теоретическая механика (теормех, термех) (1461 шт.) >
  Динамика (237 шт.)

Название или условие:
Призма и система грузов

Описание:
Груз А массы М1, опускаясь вниз по наклонной плоскости D,
образующей угол a с горизонтом, приводит в движение посредством
нерастяжимой нити, переброшенной через неподвижный блок С, груз
В массы М2. Определить горизонтальную составляющую давления
наклонной плоскости (призмы) D на выступ пола Е. Массой нити и блока С пренебречь. Трение не учитывается.


Поисковые тэги: Принцип Даламбера

Изображение предварительного просмотра:

Призма и система грузов

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Задание Д.10. Применение теоремы об изменении кинетической энергии к изучению движения механической системы
Механическая система под действием сил тяжести приходит в движение из состояния покоя. Начальное положение системы показано на рис. 1. Учитывая сопротивление качению тела 3, катящегося без скольжения, пренебрегая другими силами сопротивления и массами нитей, предполагаемых нерастяжимыми, определить скорость тела 1 в тот момент, когда пройденный им путь станет равным s.
Блоки в катки, для которых радиусы инерции в таблице не указаны, считать сплошными однородными цилиндрами.
Наклонные участки нитей параллельны соответствующим наклонным плоскостям.
Вариант 7
Дано: m1 = m; m2 = 2m; m3 = 2m; R2 = 16 см; R3 = 25 см; i2х = 14 см; α = 30°; δ = 0,20; s = 2 м.

Задача Д1
Динамика точки

Твердое тело, размерами которого в данной задаче можно пренебречь, движется из точки А по участку АВ (длиной l) по наклонной поверхности, составляющей угол α с горизонтом, в течение τ секунд. Его начальная скорость VA. Коэффициент трения скольжения тела по плоскости равен f.
В точке В тело покидает плоскость со скоростью VB и попадает со скоростью VB в точку С плоскости BD, наклоненной под углом β к горизонту, находясь в воздухе Т секунд. Сопротивление воздуха не учитывать.
Вариант 1
Дано: α = 30°; VA= 1 м/с ; f = 0.3; l=10 м; β= 60°;
Определить время τ и высоту h

Задача Д1 Вариант 1
Груз М массой m=4,5кг, получив в точке А начальную скорость V0=18м/с, движется в изогнутой трубе АВС, расположенной в вертикальной плоскости. На участке АВ на груз кроме силы тяжести P действует постоянная сила Q (Q=9Н) и сила сопротивления среды R, зависящая от скорости v груза, R=0,45V; трением груза о трубу на этом участке пренебречь.
В точке В груз, изменив направление приобретенной скорости, но сохранив при этом ее величину, переходит на участок ВС трубы, где на него кроме силы тяжести действуют силы трения (коэффициент трения груза о трубу f = 0,2) и переменная по величине сила F, направленная вдоль участка ВС, проекция которой на ось Вх: Fx =3sin(2t).
Считая груз материальной точкой и зная время t1=5c движения груза от точки А до точки В, найти уравнение х=х(t) движения груза на участке ВС.

Найти: V3 с помощью общего уравнения динамики
Лыжник массой m = 70 кг опускается без начальной скорости по склону, составляющему угол α = 30° с горизонтом, не отталкиваясь палками. Длина спуска l = 100 м, коэффициент трения скольжения лыж о снег f = 0.1. Сила сопротивления воздуха пропорциональна квадрату скорости R = 0.4v2. Определить скорость лыжника в конце спуска.Задача 3.1.
Дано: Тело М весом Р брошено вниз со скоростью v0. При движении на тело действует сила ветра F. В начальный момент тело находилось в положении Мо.
v0 = 24 м/с, a = 6 м, F = 2 Н, P = 30 Н .
Определить уравнения движения.
Задание Д4. Исследование относительного движения материальной точки
Шарик М, рассматриваемый как материальная точка, перемещается по цилиндрическому каналу движущегося тела А (рис. 11). Найти уравнение относительного движения этого шарика х = f(t), приняв за начало отсчета точку О. Тело А равномерно вращается вокруг неподвижной оси (ось вращения z1 вертикальна). Найти также координату х и давление шарика на стенку канала при заданном значении t = t1.
Вариант 7
Дано: m = 0,03 кг; ω = 2π рад/с; х0 = 0,3 м; ; t1 = 0,2 с; h = 0,2 м; f = 0.

Задача Д1. Интегрирование ДУ движения материальной точки, находящейся под действием постоянных сил.
Варианты 6-0 (рис.20 приложения, схема 2 и данные в таблице 32). Лыжник подходит к точке A участка трамплина AB, наклонённого под углом α к горизонту и имеющего длину l, со скоростью vA. Коэффициент трения скольжения лыж на участке AB равен f. Лыжник от A до B движется τ с; в точке B он покидает трамплин со скоростью vB. Через T с лыжник приземляется со скоростью vC в точке C горы, составляющей угол β с горизонтом.
При решении задачи принять лыжника за материальную точку и не учитывать сопротивление воздуха
Вариант 0

Задача 3.1
Груз массой m, получив в точке А начальную скорость V0, движется по гладкой горизонтальной поверхности под действием постоянной силы Q. На груз действует сила сопротивления R, зависящая от скорости груза. Определить скорость груза в момент времени t1.
Вариант 5
Дано: R=µ*V=0.4*V(H), m=4кг, V0=20м/с, µ=0.4H*c/м, t1=5c, g≈9.81м/c2, Q=4H.
Определить: V1-?
Динамика точки. Вариант 8
На тело массой m, движущееся по горизонтальной гладкой поверхности вдоль оси x, действует сила, проекция которой равна Fx = −0,5x. В начальный момент x0 = 0, v0x = 10 м⁄с. Определить максимальное значение координаты x тела