Артикул: 1000205

Раздел:Технические дисциплины (57837 шт.) >
  Теоретическая механика (теормех, термех) (1461 шт.) >
  Динамика (237 шт.)

Название или условие:
Призма и система грузов

Описание:
Груз А массы М1, опускаясь вниз по наклонной плоскости D,
образующей угол a с горизонтом, приводит в движение посредством
нерастяжимой нити, переброшенной через неподвижный блок С, груз
В массы М2. Определить горизонтальную составляющую давления
наклонной плоскости (призмы) D на выступ пола Е. Массой нити и блока С пренебречь. Трение не учитывается.


Поисковые тэги: Принцип Даламбера

Изображение предварительного просмотра:

Призма и система грузов

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Шкив 2 радиуса R, вращаясь с угловым ускорением ɛ2, поднимает однородный цилиндр 1, масса которого m (рис.10). Определить модуль главного вектора внешних сил, действующих на цилиндр 1.
Дано: R=0.2м, ɛ2=10c-2, m=50кг;

На однородную призму A, лежащую на горизонтальной плоскости, положена однородная призма B; поперечные сечения призм прямоугольные треугольники, масса призмы A втрое больше массы призмы B. Предполагая, что призмы и горизонтальная плоскость идеально гладкие, определить длину L , на которую передвинется призма A, когда призма B , спускаясь по A, дойдет до горизонтальной плоскости.
Дано: a=18см, b=10см, mA=3*mB.
Задача Д1
Груз D массой m, получив в точке А начальную скорость υ0, движется в изогнутой трубе ABC, расположенной в вертикальной плоскости; участки трубы или оба наклонные, или один горизонтальный, а другой наклонный (рис. Д1.0 – Д1.9, табл. Д1). На участке АВ, на груз кроме силы тяжести, действуют постоянная сила Q (ее направление показано на рисунках) и сила сопротивления среды R, зависящая от скорости v груза (направлена против движения); трением груза о трубу на участке АВ пренебречь.
В точке В груз, не изменяя своей скорости, переходит на участок ВС трубы, где на него, кроме силы тяжести, действуют сила трения (коэффициент трения груза о трубу f = 0,2) и переменная сила F, проекция которой Fx на ось х задана в таблице. Считая груз материальной точкой и зная расстояние АВ = l или время t1 движения груза от точки А до точки В, найти закон движения груза на участке ВС, т. е. x = f(t), где x = BD
Вариант 75

Задача Д1
Груз D массой m=4.8кг, получив в точке А начальную скорость V0=10м/с, движется в изогнутой трубе АВС, расположенной в вертикальной плоскости. На участке АВ на груз кроме силы тяжести P действует постоянная сила Q (Q=10Н). и сила сопротивления среды R, зависящая от скорости v груза, R=0.2·V2 (направлена против движения).
В точке В груз, не меняя своей скорости, переходит на участок ВС трубы, где на него кроме силы тяжести действует переменная сила А, проекция которой на ось X: Fx =4cos(2t).
Считая груз материальной точкой и зная расстояние АВ=l=4м движения груза от точки А до точки В, найти закон движения груза на участке ВС, т.е. X=f(t), где X=ВD. Трением груза о трубу пренебречь.
Вариант 88

По борту стоящего свободно на воде катера массы m1 и длины S с носа на корму переходит человек массы m2. Пренебрегая сопротивлением воды, определить направление и величину перемещения катера L.
Дано: S=5м, m1=600кг, m2=80кг.
По горизонтальной платформе длины S и массы m1, находившейся в начальный момент времени в покое, двое рабочих перекатывают тяжелый груз из левого конца платформы в правый. В какую сторону и насколько переместится при этом платформа, если общая масса груза и рабочих равна m2. Силами сопротивления движению пренебречь.
Дано: S=6м, m1=3500кг, m2=1500кг.
Задание Д-3
Механическая система, изображенная на рис. Д-3, состоит из нескольких тел, соединенных нерастяжимыми и не провисающими нитями; при этом тела системы совершают либо поступательное движение (грузы), либо вращаются вокруг неподвижной горизонтальной оси (однородные диски либо соосные блоки, жестко насаженные на единую ось), либо совершают плоскопараллельное движение (однородные диски либо соосные блоки).
При выполнении задания необходимо:
1. Составить математическую модель для определения движений всех тел механической системы, а так же реакций внешних и внутренних связей в виде замкнутой системы дифференциальных и алгебраических уравнений.
2. Для указанного преподавателем тела получить дифференциальное уравнение движения.
3. Для указанного преподавателем тела получить дифференциальное уравнение движения, используя теорему об изменении кинетической энергии.
4. Решить полученное в пунктах 2 и 3 дифференциальное уравнение при заданных начальных условиях.
5. Получить математическую модель для анализа условий равновесия рассматриваемой механической системы.  

Задание Д2
Механическая система состоит из грузов 1 и 2 (коэффициент трения грузов о плоскость f = 0,1 ), цилиндрического сплошного однородного катка 3 и ступенчатых шкивов 4 и 5 с радиусами ступеней R4 = 0,3 м, r4 = 0,1 м, R5 = 0,2 м, r5 = 0,1 м, (массу каждого шкива считать равномерно распределенной по его внешнему ободу) (рис. Д2.0 – Д2.9, табл. Д2). Углы α = 45°, β = 60°, γ = 30° соответственно. Тела системы соединены друг с другом нитями, намотанными на шкивы; участки нитей параллельны соответствующим плоскостям
Под действием силы F = f(s), зависящей от перемещения точки приложения силы, система приходит в движение из состояния покоя. При движении системы на шкивы 4 и 5 действуют постоянные моменты сил сопротивлений, равные соответственно M4 и M5 .
Определить значение искомой величины в тот момент времени, когда перемещение точки приложения силы F равно s1. Искомая величина указана в столбце “Найти” таблицы, где обозначено: V1 - скорость груза 1, VC3 - скорость центра масс катка 3, ω4 - угловая скорость тела 4 и т. д.
Рисунок 2.2 вариант 4.

Задача Д1
Груз D массой m=6кг, получив в точке А начальную скорость V0=15м/с, движется в изогнутой трубе АВС, расположенной в вертикальной плоскости. На участке АВ на груз кроме силы тяжести P действует постоянная сила Q (Q=12Н). и сила сопротивления среды R, зависящая от скорости v груза, R=0.6·V2 (направлена против движения).
В точке В груз, не меняя своей скорости, переходит на участок ВС трубы, где на него кроме силы тяжести действует переменная сила А, проекция которой на ось X: Fx =-5sin(2t).
Считая груз материальной точкой и зная расстояние АВ=l=5м движения груза от точки А до точки В, найти закон движения груза на участке ВС, т.е. X=f(t), где X=ВD. Трением груза о трубу пренебречь.
Вариант 44

Найти импульс равнодействующей всех сил, действующих на снаряд за время, когда снаряд из начального положения O переходит в наивысшее положение M.
Дано: m=100кг, α0=60°, V0=500м/c, V1=200м/c.