Артикул: 1113117

Раздел:Технические дисциплины (71634 шт.) >
  Математика (25302 шт.) >
  Теория вероятности (2242 шт.) >
  Теория массового обслуживания (ТМО-СМО) (61 шт.)

Название:Задана матрица Р1 вероятностей перехода цепи Маркова из состояния i (i=1,2) в состояние j (j=1,2) за один шаг. Найти матрицу Р2 перехода из состояния i в состояние j за два шага

Изображение предварительного просмотра:

Задана матрица Р<sub>1</sub> вероятностей перехода цепи Маркова из состояния i (i=1,2) в состояние j (j=1,2) за один шаг. Найти матрицу Р<sub>2</sub> перехода из состояния i в состояние j за два шага

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Найти вероятность надежной работы электрической цепи, состоящей из пяти элементов, если вероятности отказа каждого из элементов соответственно равны: Р1 = 0,03, Р2 = 0,05, Р3 = Р4 = 0,04, Р5 = 0,02
В вычислительный центр коллективного пользования с тремя компьютерами поступают заказы от предприятий на вычислительные работы. Если заняты все три компьютера, то вновь поступающий заказ не принимается и предприятие вынуждено обратиться в другой вычислительный центр. Среднее время работы с одним заказом составляет 3 часа. Интенсивность потока заявок 0.25 (з/час). Найти предельные вероятности состояний и показатели эффективности работы вычислительного центра.
Анализ эффективности работы системы M/M/1 (лабораторная работа)
Определить эффективность функционирования многопроцессорной вычислительной системы по заданному критерию - обобщенному показателю потерь
Задача об автозаправочной станции. АЗС с двумя бензораздаточными колонками имеет на своей территории парковочную площадку для трех автомобилей. На заправку, которая здесь в среднем длится две минуты, каждую минуту прибывают две автомашины. Часть из них сразу же отъезжает, если все места на площадке ожидания заняты.
Считая потоки происходящих на станции событий пуассоновскими, найти:
- относительную и абсолютную пропускную способность АЗС;
- долю сразу же отъезжающих машин (упущенная выручка);
- среднее количество занятых колонок;
- среднее количество автомашин на площадке ожидания:
- среднее время ожидания заправки и
- среднее время пребывания машин на АЗС.
Задана матрица Р1 вероятностей перехода цепи Маркова из состояния i (i=1,2) в состояние j (j=1,2) за один шаг. Найти матрицу Р2 перехода из состояния i в состояние j за два шага
Классификация СМО и их основные элементы. Обслуживание с ожиданием. (курсовая работа)Задана матрица Р1 вероятностей перехода цепи Маркова из состояния i (i=1,2) в состояние j (j=1,2) за один шаг. Найти матрицу Р2 перехода из состояния i в состояние j за два шага
Задана матрица Р1 вероятностей перехода цепи Маркова из состояния i (i=1,2) в состояние j (j=1,2) за один шаг. Найти матрицу Р2 перехода из состояния i в состояние j за два шага
Пусть филиал фирмы по ремонту радиоаппаратуры имеет n = 5 опытных мастеров. В среднем в течение рабочего дня от населения поступает в ремонт λ = 10 радиоаппаратов. Общее число радиоаппаратов, находящихся в эксплуатации у населения, очень велико, и они независимо друг от друга в различное время выходят из строя. Поэтому есть все основания полагать, что поток заявок на ремонт аппаратуры является случайным, пуассоновским. В свою очередь каждый аппарат в зависимости от характера неисправности также требует случайного различного времени на ремонт. Время на проведение ремонта зависит во многом от серьезности полученного повреждения, квалификации мастера и множества других причин. Пусть статистика показала, что время ремонта подчиняется экспоненциальному закону; при этом в среднем в течение рабочего дня каждый из мастеров успевает отремонтировать μ = 2,5 радиоаппарата. Требуется оценить работу филиала фирмы по ремонту радиоаппаратуры, рассчитав ряд основных характеристик данной СМО. За единицу времени принимаем 1 рабочий день (7 часов).