Артикул №1141338
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 07.11.2019)
Случайная величина X распределена нормально. Её математическое ожидание a=2, а среднее квадратическое отклонение σ = 5.
Найти вероятность того, что в результате испытания X примет значение, принадлежащее интервалу (1;4)



Артикул №1141178
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 04.11.2019)
Описать длину очереди в кассу в зависимости от времени суток


Артикул №1140680
Технические дисциплины >
  Математика >
  Теория вероятности

(Добавлено: 30.10.2019)
Прямоугольная полоса размером 1×n(n ≥ 4) составлена из единичных полей, занумерованных числами 1,2,⋯,n. На полях с номерами n–2,n−1,n стоит по одной фишке. Двое играют в следующую игру: каждый игрок своим ходом может перенести любую фишку на любое свободное поле с меньшим номером. Проигрывает тот, кто не может сделать очередного хода. Доказать, что начинающий может ходить так, чтобы наверняка выиграть.


Артикул №1140676
Технические дисциплины >
  Математика >
  Теория вероятности

(Добавлено: 30.10.2019)
Две урны содержат одно и то же количество шаров, несколько черных и несколько белых каждая. Из них извлекаются n (n ≥ 3) шаров с возвращением. Найти число n и содержимое обеих урн, если вероятность того, что все белые шары извлечены из первой урны, равна вероятности того, что из второй извлечены либо все белые, либо все черные шары.


Артикул №1140675
Технические дисциплины >
  Математика >
  Теория вероятности

(Добавлено: 30.10.2019)
Предположим, что на плоскость, разграфленную на единичные клетки вертикальными и горизонтальными прямыми, наудачу брошена игла длиной 2l (меньшей, чем 1) Каково среднее число прямых, пересекаемых иглою? (Мы считаем, что сторона клетки 2a равна 1, так как можно измерять длину иглы в единицах длины клеток)


Артикул №1140674
Технические дисциплины >
  Математика >
  Теория вероятности

(Добавлено: 30.10.2019)
На плоскость нанесены параллельные прямые, отстоящие друг от друга на расстоянии 2a. Игла длины 2l (меньшей, чем 2a) брошена наудачу на плоскость. Какова вероятность того, что она пересечет одну из прямых?


Артикул №1140673
Технические дисциплины >
  Математика >
  Теория вероятности

(Добавлено: 30.10.2019)
Частица выходит из начала координат 0 в трехмерном пространстве. Представим себе точку 0 как центр куба со стороною длины 2. За один шаг частица попадает в один из восьми углов куба. Поэтому при каждом шаге частица с равной вероятностью сдвигается на единицу длины вверх или вниз, на восток или на запад, на север или на юг. Какова доля частиц, возвращающихся в начало, при неограниченном времени блуждания?


Артикул №1140672
Технические дисциплины >
  Математика >
  Теория вероятности

(Добавлено: 30.10.2019)
Какова вероятность того, что корни квадратного уравнения x2+2bx+c=0 вещественны?


Артикул №1140671
Технические дисциплины >
  Математика >
  Теория вероятности

(Добавлено: 30.10.2019)
Инструмент без систематической ошибки для измерения длин делает случайные ошибки, распределение которых имеет штандарт σ. Вам разрешается произвести всего два измерения для оценки длины двух цилиндрических стержней, один из которых явно длиннее другого. Можете ли вы придумать что-либо лучшее, чем сделать по одному измерению каждого стержня? (Для инструмента без систематической ошибки среднее наблюдений равно истинному значению.)


Артикул №1140670
Технические дисциплины >
  Математика >
  Теория вероятности

(Добавлено: 30.10.2019)
В качестве следующей задачи король предлагает мудрецу выбрать наибольшее из 100 чисел при тех же условиях, что и раньше, но на этот раз число на билете выбирается наудачу среди чисел от 0 до 1 (равномерно распределенные случайные числа) Какой должна быть стратегия мудреца?


Артикул №1140669
Технические дисциплины >
  Математика >
  Теория вероятности

(Добавлено: 30.10.2019)
Игра состоит из последовательности партий, в каждой из которых вы или ваш партнер выигрывает очко, вы - с вероятностью p (меньшей, чем 12), он - с вероятностью 1−p. Число игр должно быть четным: 2, 4, 6 и т. д. Для выигрыша надо набрать больше половины очков. Предположим, что вам известно, что p=0,45, и в случае выигрыша вы получаете приз. Если число партий в игре выбирается заранее, то каков будет ваш выбор?


Артикул №1140668
Технические дисциплины >
  Математика >
  Теория вероятности

(Добавлено: 30.10.2019)
Стержень ломается случайным образом на три части. Найти средние длины короткого, среднего и длинного кусков.


Артикул №1140667
Технические дисциплины >
  Математика >
  Теория вероятности

(Добавлено: 30.10.2019)
(а) Если стержень ломается случайным образом на две части, то какова средняя длина меньшего куска?
(б) Каково среднее отношение длины короткого куска к длине длинного куска?



Артикул №1140666
Технические дисциплины >
  Математика >
  Теория вероятности

(Добавлено: 30.10.2019)
(а) На железной дороге N поездов с номерами 1,2,⋯,N. Однажды вам встретился поезд с номером 60. Угадайте, сколько поездов на железной дороге.
(б) Вы повстречали 5 поездов, причем 60 по-прежнему наибольший номер. Снова постарайтесь угадать, сколько всего поездов на железной дороге.



Артикул №1140665
Технические дисциплины >
  Математика >
  Теория вероятности

(Добавлено: 30.10.2019)
Человеку, находящемуся в Лас-Вегасе, нужны 40 долларов, в то время как он располагает лишь 20 долларами. Он не хочет телеграфировать жене о переводе денег и решает играть в рулетку (отрицательно относясь к этой игре) согласно одной из двух стратегий: либо поставить все свои 20 долларов на «чет» и закончить игру сразу же, если он выиграет или проиграет, либо ставить на «чет» по одному доллару до тех пор, пока он не выиграет или не проиграет 20 долларов. Какая из этих двух стратегий лучше?


Артикул №1140664
Технические дисциплины >
  Математика >
  Теория вероятности

(Добавлено: 30.10.2019)
У игрока M имеется 1 доллар, а у игрока N - 2 доллара. После каждого тура один из игроков выигрывает у другого один доллар. Игрок M более искусен, чем N, так что он выигрывает 23 игр. Игроки состязаются до банкротства одного из них. Какова вероятность выигрыша для M?


Артикул №1140663
Технические дисциплины >
  Математика >
  Теория вероятности

(Добавлено: 30.10.2019)
Выходные дни и дни рождения. Согласно законам о трудоустройстве в городе N, наниматели обязаны предоставлять всем рабочим выходной, если хотя бы у одного из них день рождения, и принимать на службу рабочих независимо от их дня рождения. За исключением этих выходных рабочие трудятся весь год из 365 дней. Предприниматели хотят максимизировать среднее число человеко-дней в году. Сколько рабочих трудятся на фабрике в городе N?


Артикул №1140662
Технические дисциплины >
  Математика >
  Теория вероятности

(Добавлено: 30.10.2019)
Соотношение между разными задачами о парных днях рождения. Пусть Pr обозначает вероятность того, что по крайней мере два человека из компании в r человек имеют один и тот же день рождения. Каково должно быть n в индивидуальной задаче о парных днях рождения для того, чтобы вероятность успеха приблизительно равнялась бы Pr?


Артикул №1140661
Технические дисциплины >
  Математика >
  Теория вероятности

(Добавлено: 30.10.2019)
В поисках парных дней рождения. Вы задались целью найти человека, день рождения которого совпадает с вашим. Сколько незнакомцев вам придется опросить, чтобы вероятность встречи такого человека была бы не меньше, чем 1/2?


Артикул №1140660
Технические дисциплины >
  Математика >
  Теория вероятности

(Добавлено: 30.10.2019)
При каком минимальном числе людей в компании вероятность того, что хотя бы два из них родились в один и тот же день, не меньше 1/2? (Годы рождения могут и не совпадать.)


    Категории
    Заказ решения задач по ТОЭ и ОТЦ
    Заказ решения задач по Теоретической механике
    Популярные теги в выбранной категории:
    Не нашли нужной задачи или варианта? Вы всегда можете воспользоваться быстрым заказом решения.

    Быстрый заказ решения

    Студенческая база

    Наш сайт представляет из себя огромную базу выполненных заданий по разым учебным темам - от широкораспространенных до экзотических. Мы стараемся сделать так, чтобы большиство учеников и студентов смогли найти у нас ответы и подсказки на интересующие их темы. Каждый день мы закачиваем несколько десятков, а иногда и сотни новых файлов, а общее количество решений в нашей базе превышает 150000 работ (далеко не все из них еще размещены на сайте, но мы ежедневно над этим работаем). И не забывайте, что в любой большой базе данных умение правильно искать информацию - залог успеха, поэтому обязательно прочитайте раздел «Как искать», что сильно повысит Ваши шансы при поиске нужного решения.

    Мы в социальных сетях:
    ИНН421700235331 ОГРНИП308774632500263