Артикул: 1129053

Раздел:Технические дисциплины (80228 шт.) >
  Математика (30871 шт.) >
  Теория вероятности (3454 шт.) >
  Теория массового обслуживания (ТМО-СМО) (106 шт.)

Название:В зубоврачебном кабинете три кресла, а в коридоре три стула для ожидания приема. Поток клиентов – простейший с интенсивностью 12 клиентов в час. Время обслуживания – показательное со средним 20 мин Если все стулья в коридоре заняты, то клиент не становится в очередь. Определить характеристики обслуживания

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Магазин посещает в среднем 90 человек в час. Имеющийся один кассир обслуживает в среднем одного покупателя в минуту. Очередь в зал обслуживания ограничена 5 покупателями. Оценить эффективность работы СМО. Интенсивность потока телефонных звонков в службу по вопросу поиска и спасения, имеющего один телефон, составляет 2N = 16 вызовов в час. Продолжительность принятия мер по заявке равна 0,3N = 2,4 минуты. Определить относительную и абсолютную пропускную способность этой системы массового обслуживания и вероятность отказа (занятости телефона). Сколько телефонов должно быть в службе, чтобы относительная пропускная способность была не менее 0,75.
Прибор (сервер), обрабатывающей три сообщения в 1с. Пусть имеется оборудование, которое может обрабатывать три сообщения в 1 с (µ=3). Поступает в среднем два сообщения в 1с, причем в соответствии c распределением Пуассона. Какая часть этих сообщений будет обрабатываться сразу же после поступления?В ОТК цеха работают три контролера. Если деталь поступает в ОТК, когда все контролеры заняты обслуживанием ранее поступивших деталей, то она проходит непроверенной. Среднее число деталей, поступающих в ОТК в течение часа, равно 24, среднее время, которое затрачивает один контролер на обслуживание одной детали, равно 5 мин. Определить вероятность того, что деталь пройдет ОТК необслуженной, насколько загружены контролеры и сколько их необходимо поставить, чтобы Р*обс>=0,95 (* — заданное значение Робс).
На автозаправочной станции 1 колонка. Площадка при станции допускает пребывание в очереди двух машин; если она занята, то прибывшая к станции машина проезжает мимо. Поток машин, прибывающих для заправки, имеет интенсивность 0,2 (машин в минуту). Процесс заправки продолжается в среднем 10 минут. Определить вероятность отказа.В билетной кассе на железнодорожной станции работает 1 кассир. Поток клиентов – простейший с интенсивностью 10 человек в час. Время обслуживания – показательное со средним 5 мин. Определить характеристики обслуживания, если все клиенты становятся в очередь, длина которой не ограничена.
Сберкасса имеет трех контролеров-кассиров (n= 3) для обслуживания вкладчиков. Поток вкладчиков поступает в сберкассу с интенсивностью λ= 30 чел./ч. Средняя продолжительность обслуживания контролером-кассиром одного вкладчика toбс = 3 мин. Определить характеристики сберкассы как объекта СМОИмеется двухканальная система массового обслуживания с отказами. На ее вход поступает поток заявок с интенсивностью 4 заявки в час. Среднее время обслуживания одной заявки 0,8 ч. Каждая обслуженная заявка приносит доход с = 4 рубля. Содержание каждого канала обходится 2 рубля в час. Выяснить: выгодно или нет в экономическом отношении увеличить число каналов системы до 3.
Отрезок длины 35 поделен на две части длины 25 и 10 соответственно. Наудачу 6 точек последовательно бросают на отрезок. X – случайная величина, равная числу точек, попавших на отрезок длины 10. Найдите математическое ожидание и среднее квадратичное отклонение величины X. К пункту мойки автомашин, рассчитанному на одну автомашину, подъезжает в среднем 5 машин в час. Процесс мойки одной автомашины занимает в среднем 15 минут. Рядом с пунктом мойки расположена площадка для ожидающих мойки автомашин, вмещающая 3 автомашины. Если площадка занята, то приезжающие для мойки автомашины уезжают в другие пункты мойки. Определить показатели эффективности этой СМО