Артикул: 1129036

Раздел:Технические дисциплины (80228 шт.) >
  Математика (30871 шт.) >
  Теория вероятности (3454 шт.) >
  Теория массового обслуживания (ТМО-СМО) (106 шт.)

Название:Найти оптимальное число телефонных номеров на предприятии, если заявки на переговоры поступают с интенсивностью 1,2 заявки в минуту, а средняя продолжительность разговора по телефону составляет tобс = 2 минуты. Найти также вероятность того, что в СМО за 3 минуты поступит: а) точно 2 заявки, б) не более 2-х заявок.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Сберкасса имеет трех контролеров-кассиров (n= 3) для обслуживания вкладчиков. Поток вкладчиков поступает в сберкассу с интенсивностью λ= 30 чел./ч. Средняя продолжительность обслуживания контролером-кассиром одного вкладчика toбс = 3 мин. Определить характеристики сберкассы как объекта СМО Интенсивность потока телефонных звонков в службу по вопросу поиска и спасения, имеющего один телефон, составляет 2N = 16 вызовов в час. Продолжительность принятия мер по заявке равна 0,3N = 2,4 минуты. Определить относительную и абсолютную пропускную способность этой системы массового обслуживания и вероятность отказа (занятости телефона). Сколько телефонов должно быть в службе, чтобы относительная пропускная способность была не менее 0,75.
Прибор (сервер), обрабатывающей три сообщения в 1с. Пусть имеется оборудование, которое может обрабатывать три сообщения в 1 с (µ=3). Поступает в среднем два сообщения в 1с, причем в соответствии c распределением Пуассона. Какая часть этих сообщений будет обрабатываться сразу же после поступления?На промышленном предприятии решается вопрос о том, сколько потребуется механиков для работы в ремонтном цехе. Пусть предприятие имеет 10 машин, требующих ремонта с учетом числа ремонтирующихся. Отказы машин происходят с частотой λ=10 отк/час. Для устранения неисправности механику требуется в среднем t=3 мин. Распределение моментов возникновения отказов является пуассоновским, а продолжительность выполнения ремонтных работ распределена экспоненциально. Возможно организовать 4 или 6 рабочих мест в цехе для механиков предприятия. Необходимо выбрать наиболее эффективный вариант обеспечения ремонтного цеха рабочими местами для механиков.
Пять ткачих обслуживают 20 ткацких станков. Средняя продолжительность бесперебойной работы станка-30 минут, устранение неисправности (обрывания нити) занимает в среднем 1,5 минуты. Найти характеристики СМОНа склад в среднем прибывает 3 машины в час. Разгрузку осуществляют 3 бригады грузчиков. Среднее время разгрузки машины - 1 час. В очереди в ожидании разгрузки могут находиться не более 4-х машин. Дать оценку работы СМО.
На вход многоканальной СМО с отказами поступает поток заявок, интенсивность которого составляет 11 заявок/час. Среднее время обслуживания одной заявки 0,15 часа. Каждая заявка приносит доход 130 руб., а содержание одного канала обходится в 122 руб./час. Найти оптимальное число каналов СМООтрезок длины 35 поделен на две части длины 25 и 10 соответственно. Наудачу 6 точек последовательно бросают на отрезок. X – случайная величина, равная числу точек, попавших на отрезок длины 10. Найдите математическое ожидание и среднее квадратичное отклонение величины X.
Предположим, что в телефонном режиме на СКЦ в случайном порядке поступает в среднем 2 заявки за 10 минут. Определить поток вероятности p (t) i поступления в СКЦ в среднем 4 заявки за 30 минут. В СКЦ в среднем поступает 12 заявок в час. Считая поток заказов простейшим, определить вероятность того, что: а) за 1 минуту не поступит ни одного заказа, б) за 10 минут поступит не более трех заказов.