Артикул: 1139707

Раздел:Технические дисциплины (85919 шт.) >
  Теоретическая механика (теормех, термех) (1875 шт.) >
  Статика (890 шт.) >
  Пространственная система сил (110 шт.)

Название или условие:
Задача 4
Дано: Q = 1 кН; T = 4к Н; G = 2 кН ; a = 40 см ; b = 30 см ; c = 20 см; R = 20 см; r = 10 см. Определить реакции опор пространственно нагруженной системы

Изображение предварительного просмотра:

Задача 4<br />Дано: Q = 1 кН; T = 4к Н; G = 2 кН ; a = 40 см ; b = 30 см ; c = 20 см; R = 20 см; r = 10 см. Определить реакции опор пространственно нагруженной системы

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Определить главный вектор R и главный момент MO системы сил относительно центра O и установить, к какому простейшему виду приводится эта система (задача С-6 вариант 12)
Расчетно-графическая работа №3
С-6 Задача №2

На рис. 33-37 представлены схемы конструкций, на каждую из которых действует произвольная пространственная система сил (в разных вариантах количество заданных сил различно).
Во всех вариантах G = N, кН, а величина сил Q и Т вычисляются по приведенным ниже формулам:
Q =2+N, кН; T = 10-N, кН;
где N- номер группы или число, указанное преподавателем.
Данные о геометрических размерах конструкции (а, b, с, R, r) и значение угла α приведены в табл.6.
Определить реакций опор конструкции и величину силы Р.
Проверить правильность полученных результатов.
Дано: N = 1 G = 1 кН, Q = 3 кН, T = =9 кНм, a = 20 см, bv = 15 см, c = 20 см, r= 15 см, α = 30°.
Схема 3.

Расчет пространственной конструкции
Требуется: Составить уравнения для определения реакций опор A и B и стержня DE .
Решить полученную систему уравнений равновесия на ЭВМ. Схемы конструкций и таблицы исходных данных приведены в приложении 3. Стержни и тросы считать невесомыми. Трением пренебречь. Решение системы уравнений равновесия проводится в дисплейном классе с помощью пакета Mathcad. Допускается использование других прикладных программ.
Вариант 29

Тема: Равновесие пространственной системы параллельных сил
Плита, план которой изображен на схеме, опирается на три колонны в точках 1, 2 и 3. Вес одного квадратного метра плиты составляет q = 5 кН/м2. Определить реакции опор.

Определить главный вектор R и главный момент MO системы сил относительно центра O и установить, к какому простейшему виду приводится эта система (задача С-6 вариант 9)
Определить главный вектор R и главный момент MO системы сил относительно центра O и установить, к какому простейшему виду приводится эта система (задача С-6 вариант 25)
Определить главный вектор R и главный момент MO системы сил относительно центра O и установить, к какому простейшему виду приводится эта система (задача С-6 вариант 3)
Дано: Q = 5 кН, a = 40 см, b = 40 см, c = 10 см, Q1 = Q2 = Q, Q2 ⊥ Ax. Найти реакции опор конструкции RA, MA (задача С-7 вариант 30)
Определить главный вектор R и главный момент MO системы сил относительно центра O и установить, к какому простейшему виду приводится эта система (задача С-6 вариант 10)
Определить главный вектор R и главный момент MO системы сил относительно центра O и установить, к какому простейшему виду приводится эта система (задача С-6 вариант 8)