Артикул: 1115378

Раздел:Технические дисциплины (73297 шт.) >
  Математика (26424 шт.) >
  Векторный и тензорный анализ (137 шт.)

Название или условие:
Найти градиент и производную по направлению вектора для функций
z = ln(10x2 + y2) в точке A(-1:10), a = 10i - j

Изображение предварительного просмотра:

Найти градиент и производную по направлению вектора для функций <br /> z = ln(10x<sup>2</sup> + y<sup>2</sup>) в точке A(-1:10), a = 10i - j

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Доказать, что поле a = x2i + y2j + z2k является потенциальным и найти его потенциал
Даны векторы a = {1; 1; -1}, b = {2; -1; 3}, c = [1; -2; 1}. Разложить вектор d = {12; -9; 11} по векторам a , b , c
Найти наибольшую крутизну подъёма поверхности u = xy в точке Р (2,2,4).
Начало вектора находится в точке М(4; -3; 5), конец ― в точке N(6; -2; 3). Найти координаты вектора MN, его длину и направляющие косинусы.
Вычислить поток вектора f = 2xi - 3xyj + 4zk через часть поверхности 2x + 4y + 3z = 12, лежащую в первом октанте.
Вычислить скалярное и векторное произведения векторов а(1,2,3) и b(4,5,6)
Вычислить поток векторного поля радиус-вектора a = r(x,y,z) через внешнюю сторону цилиндра (H– высота, R- радиус).
Найти поток векторного поля a через полную поверхность пирамиды V, образованной плоскостями, двумя способами: непосредственно и по теореме Остроградского-Гаусса.
a = -xi + 5yj + 2zk, x + 4y - 3z = 1

Даны векторы
a = αm+βn и b = γm+δn, где |m| =k, |n| = l, (m,n) = φ.
Найти: а) (λa + μb)·(va + τb), б) ПРb(va + τb) , в) cos(a,τb).
α = -3, B =5, γ =1, δ = 7, k =4, l = 6, λ = -2, μ =3, v = 3, τ = -2, φ = (5π/3)

Задача 10. A. Требуется: 1) найти поток векторного поля с помощью формулы Остроградского. Сделать схематичный чертёж поверхности σ.
Вариант 5