Артикул: 1115005

Раздел:Технические дисциплины (72913 шт.) >
  Математика (26101 шт.) >
  Векторный и тензорный анализ (133 шт.)

Название или условие:
Найти поток векторного поля a через полную поверхность пирамиды V, образованной плоскостями, двумя способами: непосредственно и по теореме Остроградского-Гаусса.
a = -xi + 5yj + 2zk, x + 4y - 3z = 1

Изображение предварительного просмотра:

Найти поток векторного поля a через полную поверхность пирамиды V, образованной плоскостями, двумя способами: непосредственно и по теореме Остроградского-Гаусса. <br /> a = -xi + 5yj + 2zk, x + 4y - 3z = 1

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Является ли соленоидальным поле a = y2i - (x2 + y2)j + z(3y2 + 1)k ?
При каком условии векторное поле a = φ(r) · r будет соленоидальным?

Составить уравнение плоскости, проходящей через точку М0(-3; 5; -8) и имеющей нормальный вектор n = {−1; 2; 3}
Задача 10. A. Требуется: 1) найти поток векторного поля с помощью формулы Остроградского. Сделать схематичный чертёж поверхности σ.
Вариант 5

Найти циркуляцию векторного поля a по замкнутому контуру Г, образованному при пересечении указанных поверхностей, двумя способами: непосредственно и по теореме Стокса.
Разложить тензор da/dr на симметричную и антисимметричную части.Показать, что если а, b, с —три некомпланарных вектора и Ta = a, Tb = b, Tc = c, то
Доказать, что поле a = x2i + y2j + z2k является потенциальным и найти его потенциал
Коллинеарны ли векторы р = 4а — 3b, q = 9b — 12а, где а = {-1,2,8} и b = {3,7,-1}?
Разложить на симметричную и антисимметричную части диаду ab . Выяснить значение аксиального вектора, соответствующего антисимметричной части.Вычислить скалярное и векторное произведения векторов а(1,2,3) и b(4,5,6)