Артикул: 1115005

Раздел:Технические дисциплины (72913 шт.) >
  Математика (26101 шт.) >
  Векторный и тензорный анализ (133 шт.)

Название или условие:
Найти поток векторного поля a через полную поверхность пирамиды V, образованной плоскостями, двумя способами: непосредственно и по теореме Остроградского-Гаусса.
a = -xi + 5yj + 2zk, x + 4y - 3z = 1

Изображение предварительного просмотра:

Найти поток векторного поля a через полную поверхность пирамиды V, образованной плоскостями, двумя способами: непосредственно и по теореме Остроградского-Гаусса. <br /> a = -xi + 5yj + 2zk, x + 4y - 3z = 1

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Найти градиент и производную по направлению вектора для функций:
z = ln(5x - 14y) A(14: -5), a = 10i - j

Вычислить поток вектора f = 2xi + y2j - zk через замкнутую поверхность z + 5 = x2 + y2, z = 0, лежащую в первом октанте.
Коллинеарны ли векторы р = 4а — 3b, q = 9b — 12а, где а = {-1,2,8} и b = {3,7,-1}?
Вычислить поток вектора f = 2xi - 3xyj + 4zk через часть поверхности 2x + 4y + 3z = 12, лежащую в первом октанте.
Вычислить поток векторного поля радиус-вектора a = r(x,y,z) через внешнюю сторону цилиндра (H– высота, R- радиус).
Вычислить проекцию вектора a = {1; -2; 2} на ось вектора b = {2; 10; 11}.
Доказать, что поле a = x2i + y2j + z2k является потенциальным и найти его потенциал
Начало вектора находится в точке М(4; -3; 5), конец ― в точке N(6; -2; 3). Найти координаты вектора MN, его длину и направляющие косинусы.
Найти наибольшую крутизну подъёма поверхности u = xy в точке Р (2,2,4).
Вычислить символы Кристоффеля для:
а) круговых цилиндрических координат;
б) сферических координат.