Артикул: 1115004

Раздел:Технические дисциплины (72913 шт.) >
  Математика (26101 шт.) >
  Векторный и тензорный анализ (133 шт.)

Название или условие:
Найти циркуляцию векторного поля a по замкнутому контуру Г, образованному при пересечении указанных поверхностей, двумя способами: непосредственно и по теореме Стокса.

Изображение предварительного просмотра:

Найти циркуляцию векторного поля a по замкнутому контуру Г, образованному при пересечении указанных поверхностей, двумя способами: непосредственно и по теореме Стокса.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Является ли соленоидальным поле a = y2i - (x2 + y2)j + z(3y2 + 1)k ?
При каком условии векторное поле a = φ(r) · r будет соленоидальным?

В треугольнике АВС проведена медиана АА1. Выразить вектор AA1 через векторы BC = a, BA = c .
Вычислить поток векторного поля радиус-вектора a = r(x,y,z) через внешнюю сторону цилиндра (H– высота, R- радиус).
Даны векторы a = {1; 1; -1}, b = {2; -1; 3}, c = [1; -2; 1}. Разложить вектор d = {12; -9; 11} по векторам a , b , c
Найти градиент функции r = √ (x - x0)2 + (y - y0)2 + (z - z0)2 (молуль радиус-ветора)
Векторы a, b, c взаимно перпендикулярны и имеют общее начало Найти | a + b + c |, если | a | = 10, | b | = =11, | c | = 2.
Найти градиент и производную по направлению вектора для функций:
z = ln(5x - 14y) A(14: -5), a = 10i - j

Найти поток векторного поля a через полную поверхность пирамиды V, образованной плоскостями, двумя способами: непосредственно и по теореме Остроградского-Гаусса.
a = -xi + 5yj + 2zk, x + 4y - 3z = 1

Найти наибольшую крутизну подъёма поверхности u = xy в точке Р (2,2,4).
Используя символический метод, вычислить div [a x b]