Артикул: 1060215

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Векторный и тензорный анализ (130 шт.)

Название или условие:
Возьмем шесть векторов a,b,c,p,q, r и докажем следующее тождество

Описание:
Подробное решение

Изображение предварительного просмотра:

Возьмем шесть векторов a,b,c,p,q, r и докажем следующее тождество

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Показать, что если а, b, с —три некомпланарных вектора и Ta = a, Tb = b, Tc = c, то
Составить уравнение плоскости, проходящей через точку М0(-3; 5; -8) и имеющей нормальный вектор n = {−1; 2; 3}
Найти разложение вектора х = {3,-1,2} по векторам р = {2,0,1}, q = {1,-1,1} и r = {1,-1,- 2} .
Задача 10. A. Требуется: 1) найти поток векторного поля с помощью формулы Остроградского. Сделать схематичный чертёж поверхности σ.
Вариант 5

Коллинеарны ли векторы р = 4а — 3b, q = 9b — 12а, где а = {-1,2,8} и b = {3,7,-1}?
Разложить тензор da/dr на симметричную и антисимметричную части.
Найти поток векторного поля a через полную поверхность пирамиды V, образованной плоскостями, двумя способами: непосредственно и по теореме Остроградского-Гаусса.
a = -xi + 5yj + 2zk, x + 4y - 3z = 1

Вычислить поток векторного поля радиус-вектора a = r(x,y,z) через внешнюю сторону цилиндра (H– высота, R- радиус).
В треугольнике АВС проведена медиана АА1. Выразить вектор AA1 через векторы BC = a, BA = c .Найти градиент и производную по направлению вектора для функций:
z = ln(5x - 14y) A(14: -5), a = 10i - j