Артикул: 1115217

Раздел:Технические дисциплины (73120 шт.) >
  Математика (26260 шт.) >
  Уравнения математической физики (урматы, матфизика) (152 шт.)

Название или условие:
Методом Фурье найти решение уравнения колебания струны d2u/dt2 = d2u/dx2 длины l = 2, закреплённой на концах y(0, t) = u(2,t) = 0 и удовлетворяющей следующим начальным условиям: u(x,0) = f(x), du(x, 0)/dt = φ(x)
φ(x) = 0, f(x) = 4x - 2x2, 0 ≤ x ≤ 2

Изображение предварительного просмотра:

Методом Фурье найти решение уравнения колебания струны d<sup>2</sup>u/dt<sup>2</sup> = d<sup>2</sup>u/dx<sup>2</sup> длины l = 2, закреплённой на концах y(0, t) = u(2,t) = 0 и удовлетворяющей следующим начальным условиям: u(x,0) = f(x), du(x, 0)/dt = φ(x) <br />  φ(x) = 0, f(x) = 4x - 2x<sup>2</sup>, 0 ≤ x ≤ 2

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Решение по методу Фурье
Показать, что функция
z = φ(x - at) + ψ(x + at)
удовлетворяет уравнению колебания струны d2z/dt2 = a2(d2z/dx2) (функции φ и Ψ - какие угодно дважды дифференцируемые функции)

Решение в виде ряда Фурье
Найти решение уравнения теплопроводности d2u/dx2 = α2(du/dt), удовлетворяющее начальным и граничным условиям: u(x, 0) = Asin(nπx/l), 0 ≤ x ≤ l, u(0,t) = u(l, t) = 0
Концы струны x = 0 и x = l закреплены жестко. Начальное отклонение задано равенством u(x, 0) = Asin(πx/l), 0 ≤ x ≤ l; начальная скорость равна нулю. Найти отклонение u (x, t) при t > 0
Найти решение уравнения
du/dt = d2u/dx2 (0 < x < l), t > 0

В сопротивлении материалов доказывается, что дифференциальное уравнение упругой линии консоли с постоянным поперечным сечением и сосредоточенной на свободном конце силой Р имеет вид
d2ω/dx2 = -Px/El
где ω - прогиб консоли в сечении с абсциссой х, а EI - постоянная величина, так называемая жесткость на изгиб сечения балки.
Найти решение этого уравнения, удовлетворяющее начальным условиям: ω(l) = 0; ω'(l) = 0

Решить задачу Коши для уравнения теплопроводности на прямой
Найти стационарное распределение температуры на однородной тонкой круглой пластинке радиуса R, верхняя половина которой поддерживается при температуре 1°, а нижняя при температуре 0°Найти решение уравнения du/dt = d2u/dx2, удовлетворяющее начальным условиям