Артикул: 1066780

Раздел:Технические дисциплины (57837 шт.) >
  Сопротивление материалов (сопромат) (470 шт.) >
  Пространственные балки (брусья) (19 шт.)

Название или условие:
Балка нагружена равном ерно распределенной нагрузкой с интенсивностью q, сосредоточенной силой F = qa и моментом m = 2qa2 (рис 2.16) Ее поперечное сечение изображено на рис. 2.17.
Требуется
1) построить эпюры поперечных сил и изгибающих моментов
2) из условия прочности найти размер поперечного сечения с, приняв q = 10 кН/м, а = 2 м, R = 210 Мпа,
3) в сечении балки над правой опорой построить эпюры нормальных и касательных напряжений

Описание:
Подробное решение - 5 страниц

Изображение предварительного просмотра:

Балка нагружена равном ерно распределенной нагрузкой с интенсивностью q, сосредоточенной силой F = qa и моментом  m = 2qa<sup>2 </sup>(рис 2.16) Ее поперечное сечение изображено на рис. 2.17. 	<br />Требуется 	<br />1) построить эпюры поперечных сил и изгибающих моментов	<br /> 2) из условия прочности найти размер поперечного сечения с, приняв q = 10 кН/м, а = 2 м, R = 210 Мпа,	<br /> 3) в сечении балки над правой опорой построить эпюры нормальных и касательных напряжений

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Для балки, испытывающей косой изгиб подобрать прямоугольное поперечное сечение с соотношением сторон h = 2b, если в опасном сечении возникают изгибающие моменты Мz = 28,6 кН м и Мy = 14,3 кН м. Допускаемые напряжения [σ] = 160 МПа
Стержень круглого поперечного сечения с ломанной осью нагружен сосредоточенными силой Р и моментом m.
Требуется:
1. Построить эпюры изгибающих моментов Mz, My и эпюру крутящих моментов Мкр
2. По IV теории прочности определить диаметр стержня, пренебрегая влиянием продольной силы. Расчетное сопротивление материала принять Ry=200 МПа
3. В опасной точке определить главные напряжения и проверить прочности стержня

Расчет коленчатого стержня в условиях сложного сопротивления (Курсовая работа)
Материал стержня – сталь, [σ] = 160 МПа, Е = 200ГПа.
1. Для каждого участка стержня:
1.1. Построить эпюры внутренних силовых факторов.
1.2. Определить положение опасного сечения.
1.3. Определить положение опасной точки (точек) в опасном сечении.
1.4. Определить размеры поперечного сечения участка с помощью условия прочности, отвечающего критерию наибольших касательных напряжений.
1.5. Определить положение нейтральной линии в опасном сечении участка.
1.6. Построить эпюры распределения нормальных и касательных напряжений в плоскости опасного сечения участка.
2. Определить с помощью теоремы Кастильяно перемещение в направлении заданного усилия, действующего на стержень.
Вариант ВСD 194

Для балки, испытывающей косой изгиб подобрать номер двутавра, если в опасном сечении возникают изгибающие моменты Мz = 28,6 кН м и Мy = 14,3 кН м. Допускаемые напряжения [σ] = 160 МПа
Стальной ломаный брус, состоящий из стержней круглого поперечного сечения, загружен системой сил в соответствии с рисунком. Проверить прочность бруса на участке АВ, используя 3-ю теорию прочности при [σ] = 160 МПа.
Косой изгиб
Условие задачи: На консольную балку прямоугольного сечения действуют внешние нагрузки, расположенные в разных плоскостях.
Требуется: Подобрать размеры поперечного сечения балки из условия прочности и определить линейное перемещение сечения на конце балки.

Стальной ломаный брус, состоящий из стержней круглого поперечного сечения, загружен системой сил в соответствии с рисунком. Проверить прочность бруса на участке АВ, используя 3-ю теорию прочности при [σ] = 160 МПа.
Задание 5. Расчет бруса круглого поперечного сечения на изгиб с кручением
Для стального вала постоянного поперечного сечения с двумя зубчатыми колесами см. рис. 5.1, передающего мощность Р, кВт, при угловой скорости ω, рад/с:
1. определить вертикальные и горизонтальные составляющие реакций опор (подшипников);
2. построить эпюру крутящих моментов;
3. построить эпюры поперечных сил и изгибающих моментов в вертикальной и горизонтальной плоскостях;
4. найти опасное сечение вала;
5. определить из условия прочности необходимый диаметр вала.
В расчетах принять Fr1 = 0,4F1, Fr2 = 0,4F2, [σ] = 70 МПа. Расчет на прочность провести по гипотезе наибольших касательных напряжений (третья гипотеза прочности) и по гипотезе потенциальной энергии формоизменения (пятая гипотеза прочности). Сравнить полученные результаты.
Дано: а=80 мм; b=100 мм; c=80 мм; D1=150 мм; D2=260 мм; Р=25 кВт; ω=35 рад/с.

Дано: Р= 10 МПа; Е= 200 ГПа; μ= 0,3.
Задание: Для напряженного состояния (напряжения даны в МПа). Определить:
1) значения главных напряжений;
2) положение площадки, по которой действуют главные напряжения;
3) максимальные касательные напряжения;
4) главные деформации и относительное изменение объема.
Примечание: Принять Е=200 ГПа, μ=0,3.

Определить какую силу F (рис. 15) надо приложить к пуансону штампа для пробивки в стальном листе толщиной t = 4 мм, размером в х h = 10х15, если предел прочности на срез материала листа τпч = 400 МПа. Определить также напряжение сжатия в пуансоне