Артикул: 1134031

Раздел:Технические дисциплины (82178 шт.) >
  Сопротивление материалов (сопромат) (549 шт.) >
  Пространственные балки (брусья) (24 шт.)

Название или условие:
Задание 5. Расчет бруса круглого поперечного сечения на изгиб с кручением
Для стального вала постоянного поперечного сечения с двумя зубчатыми колесами см. рис. 5.1, передающего мощность Р, кВт, при угловой скорости ω, рад/с:
1. определить вертикальные и горизонтальные составляющие реакций опор (подшипников);
2. построить эпюру крутящих моментов;
3. построить эпюры поперечных сил и изгибающих моментов в вертикальной и горизонтальной плоскостях;
4. найти опасное сечение вала;
5. определить из условия прочности необходимый диаметр вала.
В расчетах принять Fr1 = 0,4F1, Fr2 = 0,4F2, [σ] = 70 МПа. Расчет на прочность провести по гипотезе наибольших касательных напряжений (третья гипотеза прочности) и по гипотезе потенциальной энергии формоизменения (пятая гипотеза прочности). Сравнить полученные результаты.
Дано: а=80 мм; b=100 мм; c=80 мм; D1=150 мм; D2=260 мм; Р=25 кВт; ω=35 рад/с.

Описание:
Подробное решение в WORD - 9 страниц

Изображение предварительного просмотра:

<b>Задание 5. Расчет бруса круглого поперечного сечения на изгиб с кручением</b> <br />Для стального вала постоянного поперечного сечения с двумя зубчатыми колесами см. рис. 5.1, передающего мощность Р, кВт, при угловой скорости ω, рад/с: <br />1. определить вертикальные и горизонтальные составляющие реакций опор (подшипников); <br />2. построить эпюру крутящих моментов; <br />3. построить эпюры поперечных сил и изгибающих моментов в вертикальной и горизонтальной плоскостях; <br />4. найти опасное сечение вала; <br />5. определить из условия прочности необходимый диаметр вала. <br />В расчетах принять Fr1 = 0,4F1, Fr2 = 0,4F2, [σ] = 70 МПа. Расчет на прочность провести по гипотезе наибольших касательных напряжений (третья гипотеза прочности) и по гипотезе потенциальной энергии формоизменения (пятая гипотеза прочности). Сравнить полученные результаты. <br />Дано: а=80 мм; b=100 мм; c=80 мм; D1=150 мм; D2=260 мм; Р=25 кВт; ω=35 рад/с.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Деревянная балка прямоугольного поперечного сечения (рис. 3) загружена в соответствии с рис.4. Требуется:
1) найти размеры поперечного сечения балки из условия прочности при [σ] = 12 МПа;
2) построить эпюру распределения нормальных напряжений σ в одном из опасных сечений.

На рис.6.1 изображена в аксонометрии ось ломаного стержня круглого поперечного сечения, расположенная в горизонтальной плоскости. Участки стержня образуют прямые углы.
Требуется:
1) построить отдельно (в аксонометрии) эпюры изгибающих и крутящих моментов;
2) для каждого участка определить вид сопротивления и записать условие прочности (использовать четвертую гипотезу прочности).

Для балки, испытывающей косой изгиб подобрать номер двутавра, если в опасном сечении возникают изгибающие моменты Мz = 28,6 кН м и Мy = 14,3 кН м. Допускаемые напряжения [σ] = 160 МПаДеревянная балка прямоугольного поперечного сечения (рис. 3) загружена в соответствии с рис.4. Требуется:
1) найти размеры поперечного сечения балки из условия прочности при [σ] = 12 МПа;
2) построить эпюру распределения нормальных напряжений σ в одном из опасных сечений.

Дано: Р= 10 МПа; Е= 200 ГПа; μ= 0,3.
Задание: Для напряженного состояния (напряжения даны в МПа). Определить:
1) значения главных напряжений;
2) положение площадки, по которой действуют главные напряжения;
3) максимальные касательные напряжения;
4) главные деформации и относительное изменение объема.
Примечание: Принять Е=200 ГПа, μ=0,3.

Деревянная балка прямоугольного поперечного сечения (рис. 3) загружена в соответствии с рис.4. Требуется:
1) найти размеры поперечного сечения балки из условия прочности при [σ] = 12 МПа;
2) построить эпюру распределения нормальных напряжений σ в одном из опасных сечений.

Построить эпюры продольных и изгибающих сил и изгибающих моментов для балки
Подобрать круглый и прямоугольный брус для опасного сечения

Для балки, испытывающей косой изгиб подобрать прямоугольное поперечное сечение с соотношением сторон h = 2b, если в опасном сечении возникают изгибающие моменты Мz = 28,6 кН м и Мy = 14,3 кН м. Допускаемые напряжения [σ] = 160 МПа
Для балки, нагруженной силами, лежащими в плоскости, наклоненной под углом αр к вертикальной оси, требуется:
1.Построить эпюры изгибающих моментов и поперечных сил;
2.Подобрать сечение балки из стального прокатного двутавра, приняв расчетное сопротивление стали R = 210 МПа, коэффициент условий работы γс = 0,9;
3.Построить эпюру нормальных напряжений в опасном сечении балки и проверить прочность.
Дано: R = 21 кН/см2, γc = 0.9, l = 3.2 м, a = 1.4 м, αp = 0.1047 рад, P = 16 кН, q = 10 кН/м

Косой изгиб
Для двутавровой балки с заданной расчетной схемой и исходными данными: F = 11 кН; α = 200; l = 1,2м; [σ] = 160 МПа; двутавр № 24a; Iz = 3800 см4; Iy = 260см4; Wz = 317 см3; Wy=41,6 см3; требуется:
1) проверить прочность;
2) определить величину и направление полного прогиба;
3) вычислить, как изменится величина σmax и прогиба, если силу приложить вертикально (вдоль оси y).