Артикул: 1062829

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Уравнения математической физики (урматы, матфизика) (138 шт.)

Название или условие:
Найти собственные значения, собственные функции и квадраты норм собственных функций в задаче Штурма-Лиувилля с граничными условиями IV г: X'(0) - h1X(0) = 0, X'(l) + h2X(l) = 0 где h1 > 0, h2 > 0

Описание:
Подробное решение в WORD - 2 страницы

Изображение предварительного просмотра:

Найти собственные значения, собственные функции и квадраты норм собственных функций в задаче Штурма-Лиувилля с граничными условиями IV г: X'(0) - h<sub>1</sub>X(0) = 0, X'(l) + h<sub>2</sub>X(l) = 0  где h<sub>1 </sub>> 0, h<sub>2</sub> >  0

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Найти решение уравнения
du/dt = d2u/dx2 (0 < x < l), t > 0

Найти решение уравнения теплопроводности d2u/dx2 = α2(du/dt), удовлетворяющее начальным и граничным условиям: u(x, 0) = Asin(nπx/l), 0 ≤ x ≤ l, u(0,t) = u(l, t) = 0
Решение в виде суммы Фурье
Задача 88
На конце упругого стержня начиная с момента t = 0 действует продольная сила F = Asinωt, второй конец закреплен. На поверхности стержня действует сила трения пропорциональная скорости. До начала процесса стержень покоился в недеформированном состоянии. Изучить поведение решения при t → ∞.
Найти форму струны, определяемой уравнением в момент t = π/2a
В сопротивлении материалов доказывается, что дифференциальное уравнение упругой линии консоли с постоянным поперечным сечением и сосредоточенной на свободном конце силой Р имеет вид
d2ω/dx2 = -Px/El
где ω - прогиб консоли в сечении с абсциссой х, а EI - постоянная величина, так называемая жесткость на изгиб сечения балки.
Найти решение этого уравнения, удовлетворяющее начальным условиям: ω(l) = 0; ω'(l) = 0

Дана струна, закрепленная на концах x = 0 и x = l. Пусть в начальный момент форма струны имеет вид ломаной ОАВ. Найти форму струны для любого момента времени t, если начальные скорости отсутствуют.
Расчетно-графическая работа на тему: "Определение поля температур в плоской пластинке методом сеток"
Методом Даламбера найти уравнение u=u(x;t) формы однородной бесконечной струны, определяемой волновым уравнением d2u/dt2 = a2(d2u/dx2), если в начальный момент t0 = 0 форма струны и скорость точки струны с абсциссой х определяется соответственно заданными функциями
Концы струны x = 0 и x = l закреплены жестко. Начальное отклонение задано равенством u(x, 0) = Asin(πx/l), 0 ≤ x ≤ l; начальная скорость равна нулю. Найти отклонение u (x, t) при t > 0