Артикул: 1062818

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Уравнения математической физики (урматы, матфизика) (138 шт.)

Название или условие:
Вывести уравнение, описывающее распределение по объему размножающихся частиц, например, нейтронов в U235 или частиц вируса в биологической среде, если каждая из частиц порождает себе подобную в среднем через один и тот же промежуток времени.
Поставить краевую задачу о распределении концентрации частиц в некотором объеме V, если первоначально они были распределены равномерно, а на поверхности объема
а) поддерживается нулевая концентрация;
б) поверхность является непроницаемой для частиц.

Описание:
Подробное решение в WORD

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Найти решение уравнения теплопроводности d2u/dx2 = α2(du/dt), удовлетворяющее начальным и граничным условиям: u(x, 0) = Asin(nπx/l), 0 ≤ x ≤ l, u(0,t) = u(l, t) = 0
Концы струны x = 0 и x = l закреплены жестко. Начальное отклонение задано равенством u(x, 0) = Asin(πx/l), 0 ≤ x ≤ l; начальная скорость равна нулю. Найти отклонение u (x, t) при t > 0
Задача 88
На конце упругого стержня начиная с момента t = 0 действует продольная сила F = Asinωt, второй конец закреплен. На поверхности стержня действует сила трения пропорциональная скорости. До начала процесса стержень покоился в недеформированном состоянии. Изучить поведение решения при t → ∞.
Решить уравнение колебаний струны методом Фурье
Найти решение уравнения
du/dt = d2u/dx2 (0 < x < l), t > 0

Найти форму струны, определяемой уравнением в момент t = π/2a
Решение систем линейных алгебраических уравнений
Решить систему линейных алгебраических уравнений
Ах=В
а) методом Гаусса с выбором главного элемента
б) методом простых итераций (с оценкой достаточного числа итераций)
в) методом Зайделя
Решение найти с точностью 10-3
В промежуточных вычислениях удерживать 4-5 знаков после запятой
Вариант 3

Решение по методу Фурье
Решение в виде ряда Фурье
Решить задачу Коши для уравнения теплопроводности на прямой