Артикул: 1060213

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Векторный и тензорный анализ (130 шт.)

Название или условие:
Разложить на симметричную и антисимметричную части диаду ab . Выяснить значение аксиального вектора, соответствующего антисимметричной части.

Описание:
Подробное решение

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Вычислить проекцию вектора a = {1; -2; 2} на ось вектора b = {2; 10; 11}.Является ли соленоидальным поле a = y2i - (x2 + y2)j + z(3y2 + 1)k ?
При каком условии векторное поле a = φ(r) · r будет соленоидальным?

Найти градиент и производную по направлению вектора для функций:
z = ln(5x - 14y) A(14: -5), a = 10i - j

Вычислить поток векторного поля радиус-вектора a = r(x,y,z) через внешнюю сторону цилиндра (H– высота, R- радиус).
Даны векторы a = {1; 1; -1}, b = {2; -1; 3}, c = [1; -2; 1}. Разложить вектор d = {12; -9; 11} по векторам a , b , cНайти наибольшую крутизну подъёма поверхности u = xy в точке Р (2,2,4).
Задача 10. A. Требуется: 1) найти поток векторного поля с помощью формулы Остроградского. Сделать схематичный чертёж поверхности σ.
Вариант 5

Вычислить скалярное и векторное произведения векторов а(1,2,3) и b(4,5,6)
Вычислить циркуляцию вектора a = yi + x2j - zk по контуру L
Найти поток векторного поля a через полную поверхность пирамиды V, образованной плоскостями, двумя способами: непосредственно и по теореме Остроградского-Гаусса.
a = -xi + 5yj + 2zk, x + 4y - 3z = 1