Артикул: 1052999

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Математический анализ (16203 шт.) >
  Приложения определенного интеграла (830 шт.)

Название или условие:
Задача 2530 из сборника Демидовича.
Согласно закону Гука относительное удлинение ε стержня пропорционально напряжению силы σ в соответствующем поперечном сечении, т.е. ε = σ/E, где E – модуль Юнга.
Определить удлинение тяжелого стержня конической формы, укрепленного основанием и обращенного вершиной вниз, если радиус основания равен R, высотаконуса H и удельныйвес γ.

Описание:
Подробное решение.

Поисковые тэги: Сборник Демидовича

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Найти массу пластины, ограниченной линиями L1: x2 + (y - 1)2 = 1; L2: x2 + y2 = 4y; L3: x = 0 (x ≥ 0), если δ(x,y) = xy2 – поверхностная плотность пластины в точке..
Найти площадь фигуры ограниченной линиями: y=sin⁡(x), y=cos⁡(x), x=0
Вычислить площадь фигуры, ограниченной графиками функций f(x) = x - 1 и g(x) = x2 - 4x + 3. Сделать чертеж
Найти площадь фигуры, ограниченной линиями
y = (1/2)x2, y = 2x

Найти площадь фигуры, ограниченной линиями: y = ln(x); y = 0, x = e (e ≈ 2,718)Вычислить площадь криволинейной трапеции ограниченной функцией f(x)=√x, осью Ox и прямыми x=1 и x=4
Вычислить площадь одного лепестка розы, определяемой уравнением r = asin(kφ)
Найти площадь
Вычислить объем и поверхность тора, образованного вращением круга, уравнение окружности которого x2 + (y - a)2 = R2, вокруг оси Ox (a > R)
Вычислить площадь фигуры, ограниченной линиями
y = x + 1, y = x2 + 2x + 1