Артикул: 1046817

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Уравнения математической физики (урматы, матфизика) (138 шт.)

Название или условие:
Решить начально-краевую задачу

Описание:
Подробное решение - 3 странцы

Изображение предварительного просмотра:

Решить начально-краевую задачу

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Концы струны x = 0 и x = l закреплены жестко. Начальное отклонение задано равенством u(x, 0) = Asin(πx/l), 0 ≤ x ≤ l; начальная скорость равна нулю. Найти отклонение u (x, t) при t > 0
Решить задачу Коши для уравнения колебания бесконечной струны:
Дана струна, закрепленная на концах x = 0 и x = l. Пусть в начальный момент форма струны имеет вид ломаной ОАВ. Найти форму струны для любого момента времени t, если начальные скорости отсутствуют.
Найти решение уравнения
Решить задачу Коши для уравнения теплопроводности на прямой
Найти решение уравнения du/dt = a2(d2u/dx2), удовлетворяющее начальным и граничным условиям: u(x, 0) = 0; u(0, t) = u0, 0 < x < ∞, t > 0
Методом Фурье найти решение уравнения колебания струны d2u/dt2 = d2u/dx2 длины l = 2, закреплённой на концах y(0, t) = u(2,t) = 0 и удовлетворяющей следующим начальным условиям: u(x,0) = f(x), du(x, 0)/dt = φ(x)
φ(x) = 0, f(x) = 4x - 2x2, 0 ≤ x ≤ 2

Решение систем линейных алгебраических уравнений
Решить систему линейных алгебраических уравнений
Ах=В
а) методом Гаусса с выбором главного элемента
б) методом простых итераций (с оценкой достаточного числа итераций)
в) методом Зайделя
Решение найти с точностью 10-3
В промежуточных вычислениях удерживать 4-5 знаков после запятой
Вариант 3

Решение в виде суммы Фурье
Задача 88
На конце упругого стержня начиная с момента t = 0 действует продольная сила F = Asinωt, второй конец закреплен. На поверхности стержня действует сила трения пропорциональная скорости. До начала процесса стержень покоился в недеформированном состоянии. Изучить поведение решения при t → ∞.