Артикул: 1003302

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Аналитическая геометрия (1481 шт.)

Название или условие:
Задача 549 из учебника Минорского.
Написать уравнение геометрического места точек, удаленных вдвое дальше от начала координат, чем от точки (0; -3; 0)

Поисковые тэги: Сборник Минорского

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Найти скалярное и векторное произведение векторов a = (4;7;3), b = (0;1;1)Вычислить:
Даются координаты вершин некоторого треугольника ABC. Требуется:
1) вычислить длину стороны AB;
2) составить уравнение линии AB;
3) составить уравнение высоты, проведенной из вершины C;
4) вычислить расстояние от вершины B до стороны AC;
5) вычислить угол A(в радианах с точностью до двух знаков);
Вариант 7

2. Составить уравнение геометрического места точек, каждая из которых находится вдвое дальше от точки A(3;0), чем от оси ординат.
Убедиться, что векторы a = 4i + 3 j,b = 5k могут быть взяты за ребра куба. Найти третье ребро c .Напишите уравнение плоскости, проходящей через точку М (2;2;-2) и параллельной прямой х-2у-3z=0.
В треугольнике KLM угол M - прямой, KL = 29, LM = 21. Найдите tg∠KДаны векторы a(2;0;1),b(-1;1;0),c(0;1;-3) . Вычислить направляющие косинусы вектора a + 2b
Даны координаты точек А, В, С: А(1; 1; 3), B (–4; 0; 3), C (–1; 5; 7).
Требуется:
1) записать векторы AB и AC в системе орт и найти модули этих векторов;
2) найти угол между векторами AB и AC;
3) составить уравнение плоскости, проходящее через точку С перпендикулярно вектору AB.
На клетчатой бумаге с клетками размером 1 см х 1 см изображена трапеция. Найдите ее площадь в квадратных сантиметрах