Артикул: 1120268

Раздел:Технические дисциплины (77986 шт.) >
  Математика (29985 шт.) >
  Математический анализ (20330 шт.) >
  Функции нескольких переменных (101 шт.)

Название:Найти локальные экстремумы функции двух переменных
z = -8x3 + 6xy2 + y3 + 9y2

Изображение предварительного просмотра:

Найти локальные экстремумы функции двух переменных <br /> z = -8x<sup>3</sup> + 6xy<sup>2</sup> + y<sup>3</sup> + 9y<sup>2</sup>

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Вычислить минимум функции:
z = x2 + y2 + 16x + 16y - 2

Найти градиент функции u = x + ln(z2 + y2) в точке M(2,1,1)
Найти градиент функции (рис) точке M0(1,1,1) и его модуль.
Найти область определения D и область значений Е функции z = ln(y - x2 + 2x)
Найти величину и направление наибольшего изменения функции u(M)=u(x, y, z) в точке M0(x0, y0, z0)
u(M) = x2y + z, M0(1, −2, 3)

Найти полную производную функции u = x + y2 + z3, где y = sin(x), z = cos(x)
Найти наибольшее и наименьшее значения функции z = x2 + xy + y2 + 6y в области D, ограниченной линиями x = 0, y = 0, y = x-9
Заданы функции: z = f(x,y), z = φ(x;y), z = g(x;y). Требуется:
a) df/dx; d2g/dx2; df/dy; d2f/dy2;
б) найти dφ/dx; dφ/dy
в) показать, что d2g/dxdy = d2g/dydx
z = f(x;y) = 5 - 2x2 + x3y4 - ln(xy)
z = φ(x;y) = x2cos(xy)
z = g(x;y) = ex3y

Найти экстремум z=e2x(x+y2+2y)
Найти глобальные экстремумы функции y3 + 5xy - 4x + 6y + 4 в заданной замкнутой области D: x - y = 4, x = 0, y = 0