Артикул: 1112631

Раздел:Технические дисциплины (71383 шт.) >
  Теоретическая механика (теормех, термех) (1799 шт.) >
  Динамика (336 шт.)

Название:1) Определить закон движения x=x(t), где x — удлинение пружины ;
2) частоту k и период T колебаний.
Дано: P = 0.8 Н, Q = 0.5 Н, R = 0.5 м, С = 20 Н/см

Описание:
Подробное решение - 4 страницы

Изображение предварительного просмотра:

1) Определить закон движения x=x(t), где x  — удлинение пружины ;<br />  2) частоту k и период  T колебаний.<br />Дано: P = 0.8 Н, Q = 0.5 Н, R = 0.5 м, С = 20 Н/см

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Малые колебания в системе с двумя степенями свободы (Вариант 4 Схема 6)
Задача 4.2 (вариант 3)
Динамика плоского движения
К барабану лебедки (1) приложен момент M(t). Второй конец троса намотан на внутренний барабан колеса (2), которое катится без проскальзывания по наклонной плоскости. Барабан лебедки – однородный цилиндр; радиус инерции колеса ρ2, то есть момент инерции J2 = m2ρ22. Определить закон вращения лебедки φ2(t). В начальный момент система была в покое. Задачу решить двумя способами:
А) С помощью фундаментальных законов (1) и (2)
В) С помощью теоремы об изменении кинетической энергии (3)
Дано: m1= 4.0 кг, m2 = 4.0 кг, R1 = 0.3 м, R2 = 0.3 м, r2 = 0.2 м, ρ = 0.25 м, α = 30°, М = 3-0.2t Н·м
Найти: φ2=φ2(t)

Система, показанная на рисунках 1.1-1.5, состоит из следующих элементов. Грузы массами m1 и m2 движутся поступательно. К грузам прикреплены невесомые нерастяжимые нити, перекинутые или намотанные на блоки массами m3 и m4, которые могут без трения вращаться вокруг горизонтальных осей. Блок массой m3 – сплошной цилиндр, а блок массой m4 – ступенчатый цилиндр с радиусами ступеней r4 и R4 и одинаковой высотой (рисунок 1.6). При движении по блокам нити не проскальзывают, участки нитей для тел на наклонных плоскостях параллельны этим плоскостям, коэффициент трения тел о любую плоскость равен μ. Система начинает движение из состояния покоя. Считая, что все нити и участки плоскостей имеют достаточную длину, выполнить следующие задания:
1. Найти ускорения грузов массами m1 и m2 и угловые ускорения блоков ε3, ε4. Принять r3=r4.
2. Найти силы натяжения всех нитей.
3. Используя кинематические формулы, найти скорости грузов, угловые скорости блоков и пути, пройденные грузами спустя время τ после начала движения.
4. Используя закон изменения механической энергии, найти скорости грузов и угловые скорости блоков в тот момент, когда пути, пройденные грузами, составят значения, найдены в п. 3.
Вариант 16

Задание 9. Принцип Даламбера
Вертикальный вал, вращающийся с постоянной угловой скоростью ω=10 (1/с), закреплен подпятником в точке А и цилиндрическим подшипником в точке B.
AB=BD=DE=EK=b=0,4 м
К валу жестко прикреплены невесомый стержень 1 длиной l1=0,4 м с точечной массой m1=6 кг на конце и однородный стержень 2 длиной l2=0,6 м, имеющий массу m2=4 кг. Вал и оба стержня лежат в одной плоскости.
Точки крепления стержней к валу: В для стержня 1, Е для стержня 2.
α=75° β=120°
Пренебрегая весом вала, определить реакции связей.
Вариант АБВ = 342

Задание 8. Динамика материальной точки
1.Выбор исходных данных. Нанесение внешних сил на схему. Проекции сил.
2. Составление дифференциального уравнения движения груза.
3. Нахождения закона движения груза по начальным условиям.
4.Выводы.
Вариант АБВ = 342

Дано: OA = 40 cм, M = 400 Н·м.
Найти Р
(задача Д-14, вариант 22)

Тело массой 1 кг падает вертикально вниз (сила сопротивления воздуха R = 0.03v2) с высоты H = 50 м. Какова будет его скорость, когда тело достигнет поверхности Земли?Задача Д1. Груз D массой m, получив в точке А начальную скорость V0, движется в изогнутой трубе АВС, расположенной в вертикальной плоскости; участки трубы один горизонтальный, а другой наклонный. На участке АВ на груз, кроме силы тяжести, действуют постоянная сила Q (ее направление показано на рисунках) и сила сопротивления среды R, зависящая от скорости V груза (направлена против движения).
В точке В груз, не изменяя значения своей скорости, переходит на участок BС трубы, где на него кроме силы тяжести, действует переменная сила F, проекция которой на ось х задана.
Считая груз материальной точкой и зная расстояние АB=l или время t движения груза от точки А до точки В, найти закон движения груза на участке BC, т.е. x=f(t), где x=BD. Трением груза о трубу пренебречь

Динамика материальной точки
Задана сила F = 5eu/9 действующая на тело и его масса m = 90. Начальные условия: t = 0, υ0=5. Определить когда скорость достигнет значения 10?
Дано: OC = 2·OA = 100 cм, Р = 200 Н, М = 50 Н·м, С = 50 Н/см, механизм расположен в горизонтальной плоскости
Определить: h - деформацию пружины (задача Д-14, вариант 23)