Артикул: 1067615

Раздел:Технические дисциплины (53982 шт.) >
  Теоретическая механика (теормех, термех) (1457 шт.) >
  Кинематика (483 шт.) >
  Уравнение движения точки (196 шт.)

Название:Даны уравнения движения точки:
x = 5cos 3/2πt-2,5 y = 5sin 3/2πt+5 (x,y-см, t -c)
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на ее траектории.
3. Найти закон движения точки по траектории s = s(t), принимая за начало отсчета расстояний начальное положение точки.
4. Определить время T прохождения точкой полной окружности.

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

Даны уравнения движения точки: 	<br />x = 5cos 3/2πt-2,5   y = 5sin 3/2πt+5 <sub>(x,y-см, t -c)</sub>	<br />1.	Определить уравнение траектории и построить ее.  	<br />2.	Определить начальное положение точки на ее траектории.  	<br />3.	Найти закон движения точки по траектории s = s(t), принимая за начало отсчета расстояний начальное положение точки.  	<br />4.	Определить время T прохождения точкой полной окружности.

Вы можете оплатить, используя банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множеством других способов

Похожие задания:

Даны уравнения движения точки.
1. Определить уравнение траектории точки.
2. Определить скорость и ускорение точки при t = 0 и t = 1c
3. Построить траекторию и указать полученные векторы скорости и ускорения на чертеже.
Дано: x = 3sin(π/2)t, y = 4cos(π/2)t, t = 0, t = 1c

Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени. Дано: x = 2t, y = t2, t = 1
Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Определить время Т, в которого точка пройдет полную окружность.
Дано: x=8sin π/2 t-4, y=8cos π/2 t + 4

Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Построить график движения точки.
Дано: x=3sin (π/6)t-3, y=5+4sin(π/6)t

ЗАДАНИЕ К1-68
Дано: уравнения движения точки в плоскости ху: x = 2t, y = 2-t2; t1 = 1 с.
Найти: уравнение траектории точки; скорость и ускорение, касательное и нормальное ускорение и радиус кривизны траектории в момент t = t1.

Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Определить время Т, в которого точка пройдет полную окружность.
Дано: x=10-10sin (3π/2)t, y=5-10cos(3π/2)t
Даны уравнения движения груза, сброшенного с самолета.
Определить:
1) время Т и дальность L полета груза;
2) скорость груза в момент падения;
3) ускорение груза.
Дано: x=60t, y=2000-4,9t2
Найти: Т, L, υ, а.

Точка В движется в плоскости xy. Закон движения точки задан в табл.1 зависимостями x = f1(t), y = f2(t) , где x и y выражены в сантиметрах, t – в секундах. Найти уравнение траектории точки и построить ее на чертеже. Для момента времени t1 определить и показать на чертеже: а) положение точки на траектории; б) вектор ее скорости; в) векторы касательного, нормального и полного ускорений, и г) радиус кривизны траектории в соответствующей точке.
Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t) , принимая за начало отсчета расстояний начальное положение точки.
5. Построить график движения точки.
Дано: x=3cos π/6 t - 1,5, y=4-4cos π/3 t

Движение точки М происходит по траектории, показанной на рис. П.6, а согласно заданному графику изменения скорости (рис. П.6, б). Движение точки начинается в момент времени t0 = 0 из положения М0 (ОМ0 = 25 м).
Определить последовательные положения точки на траектории в выделенные на рис. П.6, б моменты времени, описать основные особенности движения точки и вычислить путь, пройденный точкой за промежуток времени t0 = 0 до t5 = 12 с.