Артикул №1091084
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Уравнение движения точки

(Добавлено: 24.04.2018)
По заданным уравнениям движения точки М установить вид её траектории и для момента t=t1(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 30)
x = 2cos((πt2)/3) - 2
y = - 2sin((πt2)/3) + 3

По заданным уравнениям движения точки М установить вид её траектории и для момента t=t<sub>1</sub>(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 30) <br /> x = 2cos((πt<sup>2</sup>)/3) - 2<br /> y = - 2sin((πt<sup>2</sup>)/3) + 3


Артикул №1091083
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Уравнение движения точки

(Добавлено: 24.04.2018)
По заданным уравнениям движения точки М установить вид её траектории и для момента t=t1(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 29)
x = 5t2 + (5t/3) - 3, y = 3t2 + t + 3, t = 1 c

По заданным уравнениям движения точки М установить вид её траектории и для момента t=t<sub>1</sub>(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 29) <br />  x = 5t<sup>2</sup> + (5t/3) - 3, y = 3t<sup>2</sup> + t + 3, t = 1 c


Артикул №1091082
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Уравнение движения точки

(Добавлено: 24.04.2018)
По заданным уравнениям движения точки М установить вид её траектории и для момента t=t1(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 23)
x = 3 - 3t2 + 1
y = 4 - 5t2 + (5t/3)
t1 = 1 c

По заданным уравнениям движения точки М установить вид её траектории и для момента t=t<sub>1</sub>(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 23) <br /> x = 3 - 3t<sup>2</sup> + 1 <br /> y = 4 - 5t<sup>2</sup> + (5t/3) <br /> t<sub>1</sub> = 1 c


Артикул №1091081
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Уравнение движения точки

(Добавлено: 24.04.2018)
По заданным уравнениям движения точки М установить вид её траектории и для момента t=t1(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 22)
x = 7t2 - 3, y = 5t, t1 = 1/4 c

По заданным уравнениям движения точки М установить вид её траектории и для момента t=t<sub>1</sub>(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 22) <br />  x = 7t<sup>2</sup> - 3, y = 5t, t<sub>1</sub> = 1/4 c


Артикул №1091080
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Уравнение движения точки

(Добавлено: 24.04.2018)
По заданным уравнениям движения точки М установить вид её траектории и для момента t=t1(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 18)
x = 1 + 3cos((π·t2)/3) см
y = 3sin((πt2)/3) + 3 см
t = t1 = 1 с

По заданным уравнениям движения точки М установить вид её траектории и для момента t=t<sub>1</sub>(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 18) <br /> x = 1 + 3cos((π·t<sup>2</sup>)/3) см <br /> y = 3sin((πt<sup>2</sup>)/3) + 3 см <br />  t = t<sub>1</sub> = 1 с


Артикул №1091079
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Уравнение движения точки

(Добавлено: 24.04.2018)
По заданным уравнениям движения точки М установить вид её траектории и для момента t=t1(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 13)
x=5cos(πt2/3);
y= -5sin(πt2/3);
t1= 1(x и y – в см, t и t1 – в с).

По заданным уравнениям движения точки М установить вид её траектории и для момента t=t1(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 13) <br /> x=5cos(πt<sup>2</sup>/3); <br /> y= -5sin(πt<sup>2</sup>/3); <br /> t<sub>1</sub>= 1(x и y – в см, t и t<sup>1</sup> – в с).


Артикул №1091078
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Уравнение движения точки

(Добавлено: 24.04.2018)
По заданным уравнениям движения точки М установить вид её траектории и для момента t=t1(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 10)

x= -4cos(πt/3) см, y= -2sin(πt/3) -3 см
t=1, с

По заданным уравнениям движения точки М установить вид её траектории и для момента t=t<sub>1</sub>(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 10) <br /> <br /> x= -4cos(πt/3) см, y= -2sin(πt/3) -3 см <br /> t=1, с


Артикул №1091077
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Уравнение движения точки

(Добавлено: 24.04.2018)
По заданным уравнениям движения точки М установить вид её траектории и для момента t=t1(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 9)
По заданным уравнениям движения точки М установить вид её траектории и для момента t=t<sub>1</sub>(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 9)


Артикул №1091076
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Уравнение движения точки

(Добавлено: 24.04.2018)
По заданным уравнениям движения точки М установить вид её траектории и для момента t=t1(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 8)
По заданным уравнениям движения точки М установить вид её траектории и для момента t=t<sub>1</sub>(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 8)


Артикул №1088192
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Уравнение движения точки

(Добавлено: 02.04.2018)
Материальная точка М движется в плоскости, на которой введена прямоу-гольная декартова система координат Оху. Движение точки задано координат-ным способом:
х =x (t)=k_1*cos⁡(2*k*t^2 )+k_2=- 2*cos⁡(2*0,9*t^2 )+3,
у = y(t)= k_3*cos⁡(k*t^2 )+k_4=- cos⁡(2*0,9*t^2 )+1.
Координаты точкиx, y измеряются в метрах, а аргумент t – в секундах.
Определить в заданный момент времени t=1,2 с все кинематические характеристики движущейся точки: уравнение траектории; координаты, проекции и величину скорости VX, VY и V, проекции и величину полного ускорение aX, aY и a, а также ее касательное aτ и нормальное an ускорения, радиус кривизны и закон движения точки по траектории s=s(t). Изобразить на рисунке полученные результаты.

Материальная точка М  движется в плоскости, на которой введена прямоу-гольная декартова система координат Оху. Движение точки задано координат-ным способом: <br />х =x (t)=k_1*cos⁡(2*k*t^2 )+k_2=- 2*cos⁡(2*0,9*t^2 )+3, <br />у = y(t)= k_3*cos⁡(k*t^2 )+k_4=-  cos⁡(2*0,9*t^2 )+1. <br />Координаты точкиx, y  измеряются в метрах, а аргумент  t  – в секундах. <br /> Определить в заданный момент времени t=1,2 с  все кинематические характеристики движущейся точки: уравнение траектории; координаты, проекции и величину скорости  V<sub>X</sub>, V<sub>Y</sub>  и V, проекции и величину полного ускорение a<sub>X</sub>, a<sub>Y</sub>  и  a, а также ее касательное a<sub>τ</sub> и нормальное a<sub>n</sub> ускорения, радиус кривизны и закон движения точки по траектории s=s(t).  Изобразить на рисунке полученные результаты.


Артикул №1068275
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Уравнение движения точки

(Добавлено: 12.11.2017)
Даны уравнения движения груза, сброшенного с самолета.
Определить:
1) время Т и дальность L полета груза;
2) скорость груза в момент падения;
3) ускорение груза.
Дано: x=90t, y=1500-4,9t2
Найти: Т, L, υ, а.

Даны уравнения движения груза, сброшенного с самолета. 	<br />Определить: 	<br />1) время Т и дальность L полета груза; 	<br />2) скорость груза в момент падения; 	<br />3) ускорение груза. 	<br />Дано:  x=90t, y=1500-4,9t<sup>2</sup>	<br />Найти: Т, L, υ, а.


Артикул №1068274
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Уравнение движения точки

(Добавлено: 12.11.2017)
Даны уравнения движения точки.
1. Определить уравнение траектории точки.
2. Определить скорость и ускорение точки при t=0 и t=1c
3. Построить траекторию и указать полученные векторы скорости и ускорения на чертеже.
Дано: x=5t2, y=4t, t=0, t=1c
Найти: x(y), V0, Vt, a0, at

Даны уравнения движения точки. 	<br />1. Определить уравнение траектории точки. 	<br />2. Определить скорость и ускорение точки при t=0 и t=1c <br />3. Построить траекторию и указать полученные векторы скорости и ускорения на чертеже. 	<br />Дано: x=5t<sup>2</sup>, y=4t, t=0, t=1c 	<br />Найти: x(y), V<sub>0</sub>, V<sub>t</sub>, a<sub>0</sub>, a<sub>t</sub>


Артикул №1068272
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Уравнение движения точки

(Добавлено: 12.11.2017)
Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t) , принимая за начало отсчета расстояний начальное положение точки.
5. Построить график движения точки.
Дано: x=3cos π/6 t - 1,5, y=4-4cos π/3 t

Даны уравнения движения точки. 	<br />1. Определить уравнение траектории и построить ее. 	<br />2. Определить начальное положение точки на траектории.	<br /> 3. Указать моменты времени, когда точка пересекает оси координат. 	<br />4. Найти закон движения точки по траектории s=φ(t) , принимая за начало отсчета расстояний начальное положение точки. 	<br />5. Построить график движения точки. 	<br />Дано: x=3cos π/6 t - 1,5, y=4-4cos π/3 t


Артикул №1068266
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Уравнение движения точки

(Добавлено: 13.11.2017)
Даны уравнения движения груза, сброшенного с самолета.
Определить:
1) время Т и дальность L полета груза;
2) скорость груза в момент падения;
3) ускорение груза.
Дано: x=60t, y=2000-4,9t2
Найти: Т, L, υ, а.

Даны уравнения движения груза, сброшенного с самолета. <br />Определить: <br />1) время Т и дальность L полета груза; <br />2) скорость груза в момент падения; <br />3) ускорение груза. <br />Дано: x=60t, y=2000-4,9t<sup>2</sup><br />Найти: Т, L, υ, а.


Артикул №1068264
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Уравнение движения точки

(Добавлено: 13.11.2017)
Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Определить время Т, в которого точка пройдет полную окружность.
Дано: x=8sin π/2 t-4, y=8cos π/2 t + 4

Даны уравнения движения точки. 	<br />1. Определить уравнение траектории и построить ее. 	<br />2. Определить начальное положение точки на траектории. 	<br />3. Указать моменты времени, когда точка пересекает оси координат. 	<br />4. Найти закон движения точки по траектории  s=φ(t), принимая за начало отсчета расстояний начальное положение точки. 	<br />5. Определить время Т, в которого точка пройдет полную окружность. 	<br />Дано:  x=8sin π/2 t-4, y=8cos π/2 t + 4


Артикул №1068263
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Уравнение движения точки

(Добавлено: 13.11.2017)
Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Определить время Т в которое точка пройдет полную окружность. Дано: x=4sin π/3 t-2, y=4cos π/3 t+2

Даны уравнения движения точки. 	<br />1. Определить уравнение траектории и построить ее. 	<br />2. Определить начальное положение точки на траектории. 	<br />3. Указать моменты времени, когда точка пересекает оси координат. 	<br />4. Найти закон движения точки по траектории  s=φ(t), принимая за начало отсчета расстояний начальное положение точки. 	<br />5. Определить время Т в которое точка пройдет полную окружность.  Дано: x=4sin π/3 t-2, y=4cos π/3 t+2


Артикул №1068262
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Уравнение движения точки

(Добавлено: 13.11.2017)
Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Построить график движения точки. Дано: x=8sin π/4t-4, y=6sin π/4 t+3

Даны уравнения движения точки. 	<br />1. Определить уравнение траектории и построить ее. 	<br />2. Определить начальное положение точки на траектории. 	<br />3. Указать моменты времени, когда точка пересекает оси координат. 	<br />4. Найти закон движения точки по траектории  s=φ(t), принимая за начало отсчета расстояний начальное положение точки. 	<br />5. Построить график движения точки. Дано: x=8sin π/4t-4, y=6sin π/4 t+3


Артикул №1068027
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Уравнение движения точки

(Добавлено: 11.11.2017)
Задача 7.8.20 из сборника Кепе.
Точка движется по криволинейной траектории с касательным ускорением aτ = 2 м/с2. Определить угол в градусах между векторами скорости и полного ускорения точки в момент времени t = 2 с, когда радиус кривизны траектории ρ = 4 м, если при t0 = 0 скорость точки v0 = 0

Поисковые тэги: Задачник Кепе

Артикул №1067644
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Уравнение движения точки

(Добавлено: 09.11.2017)
Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Определить время Т, в которого точка пройдет полную окружность.
Дано: x=10-10sin (3π/2)t, y=5-10cos(3π/2)t



Артикул №1067643
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Уравнение движения точки

(Добавлено: 09.11.2017)
Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Построить график движения точки.
Дано: x=3sin (π/6)t-3, y=5+4sin(π/6)t

Даны уравнения движения точки. 	<br />1. Определить уравнение траектории и построить ее. 	<br />2. Определить начальное положение точки на траектории. 	<br />3. Указать моменты времени, когда точка пересекает оси координат. 	<br />4. Найти закон движения точки по траектории  s=φ(t), принимая за начало отсчета расстояний начальное положение точки. 	<br />5. Построить график движения точки. 	<br />Дано: x=3sin (π/6)t-3, y=5+4sin(π/6)t


    Категории
    Заказ решения задач по ТОЭ и ОТЦ
    Заказ решения задач по Теоретической механике
    Популярные теги в выбранной категории:
    Не нашли нужной задачи или варианта? Вы всегда можете воспользоваться быстрым заказом решения.

    Быстрый заказ решения

    Студенческая база

    Наш сайт представляет из себя огромную базу выполненных заданий по разым учебным темам - от широкораспространенных до экзотических. Мы стараемся сделать так, чтобы большиство учеников и студентов смогли найти у нас ответы и подсказки на интересующие их темы. Каждый день мы закачиваем несколько десятков, а иногда и сотни новых файлов, а общее количество решений в нашей базе превышает 150000 работ (далеко не все из них еще размещены на сайте, но мы ежедневно над этим работаем). И не забывайте, что в любой большой базе данных умение правильно искать информацию - залог успеха, поэтому обязательно прочитайте раздел «Как искать», что сильно повысит Ваши шансы при поиске нужного решения.

    Мы в социальных сетях: