Артикул: 1067602

Раздел:Технические дисциплины (53982 шт.) >
  Теоретическая механика (теормех, термех) (1457 шт.) >
  Кинематика (483 шт.) >
  Уравнение движения точки (196 шт.)

Название:Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени. Дано: x = 2t, y = t2, t = 1

Описание:
Подробное решение в WORD

Вы можете оплатить, используя банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множеством других способов

Похожие задания:

Даны уравнения движения точки:
x = 1 - 2cos2 (π/4)t, y=6-2cos2(π/4)t (x,y,-мбt-c)
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s = s(t), принимая за начало отсчета расстояний начальное положение точки.
5. Построить график движения точки.

Даны уравнения движения точки.
1. Определить уравнение траектории точки.
2. Определить скорость и ускорение точки при t=0 и t=1c
3. Построить траекторию и указать полученные векторы скорости и ускорения на чертеже.
Дано: x=5t2, y=4t, t=0, t=1c
Найти: x(y), V0, Vt, a0, at

ЗАДАНИЕ К1-68
Дано: уравнения движения точки в плоскости ху: x = 2t, y = 2-t2; t1 = 1 с.
Найти: уравнение траектории точки; скорость и ускорение, касательное и нормальное ускорение и радиус кривизны траектории в момент t = t1.

Точка В движется в плоскости xy. Закон движения точки задан в табл.1 зависимостями x = f1(t), y = f2(t) , где x и y выражены в сантиметрах, t – в секундах. Найти уравнение траектории точки и построить ее на чертеже. Для момента времени t1 определить и показать на чертеже: а) положение точки на траектории; б) вектор ее скорости; в) векторы касательного, нормального и полного ускорений, и г) радиус кривизны траектории в соответствующей точке.
Закон движения точки М в плоскости ху задан уравнениями x = 4 sin(πt/ 6) -1, y = 3cos (πt/ 6) + 2 (где х, у – в сантиметрах, t – в секундах). Определить: уравнение траектории точки; для момента времени t1 = 2 с найти скорость и ускорение точки, а также ее касательное и нормальное ускорение и радиус кривизны в соответствующей точке траектории. Траекторию и найденные векторные величины изобразить на чертеже.Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Определить время Т, в которого точка пройдет полную окружность.
Дано: x=10-10sin (3π/2)t, y=5-10cos(3π/2)t
Дан закон движения точки по окружности радиуса R = 5 м:
s = t3 - 22,5t2+162t-15 (s – см; t –с ). (л)
1. Определить скорость и ускорение точки при t = 0 и t1 = 10 с.
2. Определить моменты остановки точки.
3. Определить путь, пройденный точкой за 10 с.

Даны уравнения движения точки (рис) x = 4 - 4sin (π/6)t, y = 2 - 4cos (π/6)t
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s = φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Определить время Т, в которого точка пройдет полную окружность.

Даны уравнения движения точки:
x = 2 (еt + e-t); y = 2(et-e-t) (х, у – м; t – с ).
1. Определить уравнение траектории точки.
2. Определить скорость и ускорение точки при t = 1 с.
3. Построить траекторию и указать полученные векторы скорости и ускорения на чертеже.

Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s = φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Построить график движения точки.
Дано: x = 6sin(π/6)t-8, y = 10+8sin(π/6)t