Артикул: 1067593

Раздел:Технические дисциплины (57837 шт.) >
  Теоретическая механика (теормех, термех) (1461 шт.) >
  Кинематика (483 шт.) >
  Сложное движение точки (58 шт.)

Название:Проволочная окружность радиусом R=20 см вращается в своей плоскости вокруг точки О с угловой скоростью ω = 3 1/с .
На окружность надето колечко М, которое может скользить по неподвижному стержню АВ.
Найти абсолютную скорость колечка М и его скорость относительно окружности в заданном положении.
Дано: R = 20 см, ω = 3 1/с, h = 10 см
Найти: Va, VT

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

Проволочная окружность радиусом  R=20 см вращается в своей плоскости вокруг точки О с угловой скоростью ω = 3 <sup>1</sup>/<sub>с </sub>. 	<br />На окружность надето колечко М, которое может скользить по неподвижному стержню АВ. 	<br />Найти абсолютную скорость колечка М и его скорость относительно окружности в заданном положении. 	<br />Дано: R = 20 см, ω = 3 <sup>1</sup>/<sub>с</sub>, h = 10 см <br /> Найти: V<sub>a</sub>, V<sub>T</sub>

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Круглая пластина радиусом R = 60 см вращается вокруг неподвижной оси, перпендикулярной плоскости пластины и проходящей через точку О, лежащую на ее ободе, по закону φ = 4(t2 - t) рад (рис. 6.4). По ободу пластины движется точка М, положение которой определяется координатой S - АМ - πR(At2 - 2t3)/3 см.
Определить абсолютную скорость и абсолютное ускорение точки М в момент времени t = 1 с.

Задача К4
Определить скорости и ускорения точки А

Вдоль цеха по рельсам с постоянной скоростью 0,1 м/с перемещается мостовой кран АВ, по которому с постоянной скоростью 0,2 м/с движется тележка М. Определить абсолютную скорость тележки.
Дано: ОМ0 = 50 см; ω1 = 3,2 рад/с; ε1 = -4,7 рад/с, ММ0 = 10 см.
Найти: ωА, εА, vм, εм.
ОС = √502-252=43,3 см.

Кольцо радиуса R = 15 см жестко соединено стержнем ДО с валом О, ось вращения которого перпендикулярна плоскости рисунка. Вал О вращается по закону φ = 3t2-4t. Из точки А по кольцу движется точка М так, что расстояние АМ изменяется по закону
s = AM = 20√3·π·sin(πt/3) см.
Определить абсолютное ускорение точки М в момент времени t1 = 4/3 с, если в этот момент кольцо расположено так, как указано на рисунке. Принять l = 20 см.

По заданным уравнениям относительного движения точки М и переносного движения тела D определить для момента времени t=t1 абсолютную скорость и абсолютное ускорение точки M.
Дано:
OM = Sr(t) = 4πt2 см
xe = t3 + 4t
t1 = 2 c
R = 48 см
(задача К-7, вариант 30)

По заданным уравнениям относительного движения точки М и переносного движения тела D определить для момента времени t=t1 абсолютную скорость и абсолютное ускорение точки M.
Исходные данные:
OM = Sr = 6πt2 см, t1 = 1 с,
R = 18 см,
O1O = O2A = 20 см,
φe = (πt3)/6
(задача К-7, вариант 23)

Угол наклона полного ускорения точки обода махового колеса к радиусу равен 60°. Касательное ускорение точки в данный момент aτ = 20√3 м/с2 (рис.).
Найти нормальное и полное ускорение точки, отстоящей от оси вращения на расстоянии r = 0.5м.
Радиус махового колеса R = 0.8 м.
Дано: α=60°
aτ = 20√3 м/с2
r = 0.5м
R = 0.8м
Найти: an,a -?

По трубке, изогнутой в форме окружности радиуса R = 20 см (рис), течет жидкость с постоянной относительно трубки скоростью 40 см/с. Трубка вращается вокруг оси О с постоянной угловой скоростью ω = 1 1/с. Найти абсолютную скорость частицы жидкости, когда она занимает в трубке положение, определяемое углом ОСМ, равным 120° . Направления вращения трубки и течения жидкости (по трубке) – против хода стрелки часов.
По заданным уравнениям относительного движения точки М и переносного движения тела D определить для момента времени t=t1 абсолютную скорость и абсолютное ускорение точки M.
Дано:
OM = Sr(t) = 8cos(πt/2)
φе(t) = -2πt2 рад
t1 = 3/2c
α = 45°
(задача К-7, вариант 26)