Артикул: 1114225

Раздел:Технические дисциплины (72234 шт.) >
  Теоретическая механика (теормех, термех) (1817 шт.) >
  Кинематика (531 шт.) >
  Сложное движение точки (69 шт.)

Название:Дано: φ = 4(t2 - t), рад
S = ОМ = 40(3t2 + t), см
t = 1 c
Пластинка вращается по заданному уравнению φ = φ(t). По пластинке вдоль прямой ОМ (сторона квадратной пластины а = 40 см) или радиусу R (R = 40 cм) движется точка М. Движение точки М задано уравнениями S(t) = OM(t). Вычислить для точки М:
- абсолютную скорость в момент времени t = 1 c, показать на рисунке векторы относительной, переносной и абсолютной скоростей
- абсолютное ускорение в момент времени t = 1 c, показать на рисунке направление векторов относительного, переносного ускорений, а также ускорения Кориолиса.
Функциональные зависимости φ = φ(t) в радианах заданы в таблице, фигурные пластинки и уравнение движения точки ОМ = ОМ(t) в сантиметрах заданы в таблице.

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

Дано:  φ = 4(t<sup>2</sup> - t), рад <br /> S = ОМ = 40(3t<sup>2</sup> + t), см <br /> t = 1 c <br /> Пластинка вращается по заданному уравнению φ = φ(t). По пластинке вдоль прямой ОМ (сторона квадратной пластины а = 40 см) или радиусу R (R = 40 cм) движется точка М. Движение точки М задано уравнениями S(t) = OM(t). Вычислить для точки М: <br /> - абсолютную скорость в момент времени t = 1 c, показать на рисунке векторы относительной, переносной и абсолютной скоростей <br /> - абсолютное ускорение в момент времени t = 1 c, показать на рисунке направление векторов относительного, переносного ускорений, а также ускорения Кориолиса. <br /> Функциональные зависимости φ = φ(t) в радианах заданы в таблице, фигурные пластинки и уравнение движения точки ОМ  = ОМ(t) в сантиметрах заданы в таблице.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Прямоугольная пластина или круглая пластина радиусом R = 60 см (рис.1.4) вращается вокруг неподвижной оси с постоянной угловой скоростью, заданной в табл. 1.4 (при знаке минус направление противоположно показанному на рисунке). Ось вращения на схемах 1 - 4 и 9, 10 перпендикулярна плоскости пластины и проходит через точку О (пластина вращается в своей плоскости); на схемах 5 – 8 ось вращения ОО1 лежит в плоскости пластины (пластина вращается в пространстве).
По пластине вдоль прямой BD ( схемы 1 – 6) или по окружности радиуса R, т.е. по ободу пластины (схемы 7 – 10), движется точка М. Закон ее относительного движения, выражаемый уравнением S = AM = f(t) (s – в сантиметрах, t - в секундах), задан в табл. 1.4 отдельно для схем 1 – 6 и для схем 7 - 10, при этом на схемах 7 - 10 и отсчитывается по дуге окружности; там же даны размеры b и l . На всех схемах точка М показана в положении, при котором s = AM > 0 (при s < 0 точка М находится по другую сторону от точки А).
Определить абсолютную скорость и абсолютное ускорение точки М в момент времени t1 = 1 с.

Проволочная окружность радиусом R=20 см вращается в своей плоскости вокруг точки О с угловой скоростью ω = 3 1/с .
На окружность надето колечко М, которое может скользить по неподвижному стержню АВ.
Найти абсолютную скорость колечка М и его скорость относительно окружности в заданном положении.
Дано: R = 20 см, ω = 3 1/с, h = 10 см
Найти: Va, VT

Треугольная пластина ADE вращается вокруг оси Z с угловой скоростью ω = 0,3t2 − 2,2 рад/с (положительное направление ω показано на рисунке дуговой стрелкой). По гипотенузе AD движется точка В по закону S = АВ = 2 +15t − 3t2 см (положительное направление отсчёта S от А к D). Определить абсолютную скорость Vабс и абсолютное ускорение aабс точки B в момент времени t1 = 2 c.
Круглая пластина радиусом R = 60 см вращается вокруг неподвижной оси, перпендикулярной плоскости пластины и проходящей через точку О, лежащую на ее ободе, по закону φ = 4(t2 - t) рад (рис. 6.4). По ободу пластины движется точка М, положение которой определяется координатой S - АМ - πR(At2 - 2t3)/3 см.
Определить абсолютную скорость и абсолютное ускорение точки М в момент времени t = 1 с.

Прямоугольная пластинка (рис. К4.1) вращается вокруг неподвижной оси z по закону φ = t3 - 2t2 . По пластинке вдоль прямой ВD, образующей с вертикалью угол α = 30°, движется точка М по закону s = AM = 30(t2 - t)+ 20 см (t – в секундах). На рис. К4.1 точка М показана в положении, при котором S = AM > 0 (при S < 0 точка М находится по другую сторону от точки А). Найти абсолютную скорость и абсолютное ускорение точки М в момент времени t1 = 1 с.
Круглая пластинка (рис. К4.2) радиуса R = 60 см, вращается вокруг неподвижной оси, проходящей через точку О, по законуφ= 2t2 - t3 . По пластинке по окружности движется точка М по закону s = AM = ((πR)/2)(2t3 - 4t2) = см (t – в секундах). На рис. К4.2 точка М показана в положении, при котором S = AM > 0 (при S < 0 точка М находится по другую сторону от точки А). Найти абсолютную скорость и абсолютное ускорение точки М в момент времени t1 = 1 с.
По заданным уравнениям относительного движения точки М и переносного движения тела D определить для момента времени t=t1 абсолютную скорость и абсолютное ускорение точки M.
Дано:
OM = Sr(t) = 25sin(πt/3)
φв(t) = 2t2 - 0,5t
t1 = 4c
a = 25 cм
(задача К-7, вариант 11)

По заданным уравнениям относительного движения точки М и переносного движения тела D определить для момента времени t=t1 абсолютную скорость и абсолютное ускорение точки M.
Исходные данные:
OM = Sr = 6πt2 см, t1 = 1 с,
R = 18 см,
O1O = O2A = 20 см,
φe = (πt3)/6
(задача К-7, вариант 23)

По заданным уравнениям относительного движения точки М и переносного движения тела D определить для момента времени t=t1 абсолютную скорость и абсолютное ускорение точки M.
Дано:
OM = Sr(t) = 8cos(πt/2)
φе(t) = -2πt2 рад
t1 = 3/2c
α = 45°
(задача К-7, вариант 26)

Задача К4. Вариант 63
Дано:
φ = t2-2t3
b = 16 см
S = AM = 60(t4-3t2)+56
t1 = 1c
Найти: Vab, aab